{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "apMnCeBi0kAa", "executionInfo": { "status": "ok", "timestamp": 1668340169194, "user_tz": -210, "elapsed": 26751, "user": { "displayName": "Mohammad Ebrahimi", "userId": "10407139745331958037" } }, "outputId": "852beb1d-3b81-4f1e-8b41-511ee62a6458" }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "juTvp3cXy0vT", "executionInfo": { "status": "ok", "timestamp": 1668340312085, "user_tz": -210, "elapsed": 2, "user": { "displayName": "Mohammad Ebrahimi", "userId": "10407139745331958037" } }, "outputId": "76fc9722-9631-4573-b68c-f2d460ebaf96" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "/content/drive/MyDrive/OpenNRE-master\n" ] } ], "source": [ "%cd /content/drive/MyDrive/OpenNRE-master" ] }, { "cell_type": "code", "source": [ "!pip install -r requirements.txt" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Zw-L_bBWy3q6", "executionInfo": { "status": "ok", "timestamp": 1668340295967, "user_tz": -210, "elapsed": 119014, "user": { "displayName": "Mohammad Ebrahimi", "userId": "10407139745331958037" } }, "outputId": "c73fdd46-9d49-4643-a588-3021e6395c32" }, "execution_count": 5, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "ERROR: Could not find a version that satisfies the requirement torch==1.6.0 (from versions: 1.7.1, 1.8.0, 1.8.1, 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0, 1.12.0, 1.12.1, 1.13.0, 1.13.1)\n", "ERROR: No matching distribution found for torch==1.6.0\n", "\n", "[notice] A new release of pip available: 22.3.1 -> 23.0\n", "[notice] To update, run: python.exe -m pip install --upgrade pip\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: pip in e:\\hamed\\work\\5\\opennre-master\\venv\\lib\\site-packages (22.3.1)\n", "Collecting pip\n", " Using cached pip-23.0-py3-none-any.whl (2.1 MB)\n", "Installing collected packages: pip\n", " Attempting uninstall: pip\n", " Found existing installation: pip 22.3.1\n", " Uninstalling pip-22.3.1:\n", " Successfully uninstalled pip-22.3.1\n", "Successfully installed pip-23.0\n" ] } ] }, { "cell_type": "code", "source": [ "# %%shell\n", "!python train_supervised_bert.py \\\n", " --pretrain_path HooshvareLab/bert-base-parsbert-uncased \\\n", " --dataset none \\\n", " --train_file ./Perlex/Perlex_train.txt \\\n", " --val_file ./Perlex/Perlex_val.txt \\\n", " --test_file ./Perlex/Perlex_test.txt \\\n", " --rel2id_file ./Perlex/Perlex_rel2id.json \\\n", " --max_epoch 20" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "aEiTLWpPzV3J", "executionInfo": { "status": "ok", "timestamp": 1665308620117, "user_tz": -210, "elapsed": 7519388, "user": { "displayName": "arian ebrahimi", "userId": "00418818321983401320" } }, "outputId": "90c72478-d09d-4f96-9417-7c2ad805a66b" }, "execution_count": 3, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Traceback (most recent call last):\n", " File \"E:\\Hamed\\Work\\5\\OpenNRE-master\\train_supervised_bert.py\", line 2, in \n", " import torch\n", "ModuleNotFoundError: No module named 'torch'\n" ] } ] }, { "cell_type": "code", "source": [ "%%shell\n", "python train_supervised_bert.py \\\n", " --pretrain_path HooshvareLab/bert-base-parsbert-uncased \\\n", " --dataset none \\\n", " --train_file ./Perlex/Perlex_train.txt \\\n", " --val_file ./Perlex/Perlex_val.txt \\\n", " --test_file ./Perlex/Perlex_test.txt \\\n", " --rel2id_file ./Perlex/Perlex_rel2id.json \\\n", " --max_epoch 20" ], "metadata": { "id": "zhYjakhv13c8", "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "status": "ok", "timestamp": 1665318000439, "user_tz": -210, "elapsed": 7490397, "user": { "displayName": "arian ebrahimi", "userId": "00418818321983401320" } }, "outputId": "d2d9d494-0222-425f-ff3a-50e01b33419f" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "100% 242/242 [05:39<00:00, 1.40s/it, acc=0.285, loss=2.38]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.627]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.643, loss=1.2]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.718]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.739, loss=0.848]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.742]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.797, loss=0.675]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.742]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.842, loss=0.544]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.752]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.872, loss=0.452]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.742]\n", "100% 242/242 [05:45<00:00, 1.43s/it, acc=0.901, loss=0.354]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.749]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.926, loss=0.292]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.746]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.941, loss=0.236]\n", "100% 47/47 [00:25<00:00, 1.81it/s, acc=0.747]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.951, loss=0.195]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.748]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.962, loss=0.162]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.746]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.969, loss=0.14]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.744]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.974, loss=0.118]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.746]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.978, loss=0.102]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.746]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.981, loss=0.0912]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.74]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.985, loss=0.081]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.742]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.986, loss=0.0736]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.74]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.986, loss=0.0724]\n", "100% 47/47 [00:25<00:00, 1.81it/s, acc=0.742]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.99, loss=0.065]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.742]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.99, loss=0.0624]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.739]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.744]\n", "Test set results:\n", "Accuracy: 0.7444963308872582\n", "Micro precision: 0.7831612390786339\n", "Micro recall: 0.7919678714859437\n", "Micro F1: 0.7875399361022364\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [] }, "metadata": {}, "execution_count": 3 } ] }, { "cell_type": "code", "source": [ "%%shell\n", "python train_supervised_bert.py \\\n", " --pretrain_path HooshvareLab/bert-base-parsbert-uncased \\\n", " --dataset none \\\n", " --train_file ./Perlex/Perlex_train.txt \\\n", " --val_file ./Perlex/Perlex_val.txt \\\n", " --test_file ./Perlex/Perlex_test.txt \\\n", " --rel2id_file ./Perlex/Perlex_rel2id.json \\\n", " --max_epoch 20 \\\n", " --lr 15e-6" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "bcdc6f55-f9b9-40b0-a661-777145267ede", "id": "zUa7CDEeFBGJ" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "100% 242/242 [05:38<00:00, 1.40s/it, acc=0.444, loss=1.84]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.704]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.733, loss=0.842]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.753]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.871, loss=0.432]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.764]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.942, loss=0.208]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.747]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.979, loss=0.0991]\n", "100% 47/47 [00:25<00:00, 1.81it/s, acc=0.75]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.991, loss=0.0488]\n", "100% 47/47 [00:25<00:00, 1.81it/s, acc=0.737]\n", "100% 242/242 [05:46<00:00, 1.43s/it, acc=0.998, loss=0.0243]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.746]\n", "100% 242/242 [05:45<00:00, 1.43s/it, acc=0.999, loss=0.0157]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.747]\n", "100% 242/242 [05:45<00:00, 1.43s/it, acc=1, loss=0.0098]\n", "100% 47/47 [00:25<00:00, 1.83it/s, acc=0.753]\n", "100% 242/242 [05:45<00:00, 1.43s/it, acc=0.999, loss=0.00806]\n", "100% 47/47 [00:25<00:00, 1.82it/s, acc=0.751]\n", " 65% 157/242 [03:45<02:01, 1.43s/it, acc=0.999, loss=0.00759]" ] } ] }, { "cell_type": "code", "source": [ "%%shell\n", "python train_supervised_bert.py \\\n", " --pretrain_path HooshvareLab/bert-base-parsbert-uncased \\\n", " --dataset none \\\n", " --train_file ./Perlex/Perlex_train.txt \\\n", " --val_file ./Perlex/Perlex_val.txt \\\n", " --test_file ./Perlex/Perlex_test.txt \\\n", " --rel2id_file ./Perlex/Perlex_rel2id.json \\\n", " --max_epoch 20 \\\n", " --lr 15e-6" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "spUwXoWnPchu", "outputId": "b1b389c8-c1b5-41bf-ee81-7dfc2cb5f8a0" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Downloading: 100% 654M/654M [00:09<00:00, 66.7MB/s]\n", "Downloading: 100% 1.22M/1.22M [00:01<00:00, 872kB/s]\n", "100% 242/242 [05:18<00:00, 1.32s/it, acc=0.444, loss=1.84]\n", "100% 47/47 [00:23<00:00, 1.99it/s, acc=0.704]\n", "100% 242/242 [05:29<00:00, 1.36s/it, acc=0.733, loss=0.842]\n", "100% 47/47 [00:23<00:00, 1.98it/s, acc=0.753]\n", "100% 242/242 [05:29<00:00, 1.36s/it, acc=0.871, loss=0.432]\n", "100% 47/47 [00:23<00:00, 1.99it/s, acc=0.764]\n", "100% 242/242 [05:29<00:00, 1.36s/it, acc=0.942, loss=0.208]\n", "100% 47/47 [00:23<00:00, 1.99it/s, acc=0.747]\n", "100% 242/242 [05:28<00:00, 1.36s/it, acc=0.979, loss=0.0991]\n", "100% 47/47 [00:23<00:00, 1.99it/s, acc=0.75]\n", "100% 242/242 [05:29<00:00, 1.36s/it, acc=0.991, loss=0.0488]\n", "100% 47/47 [00:23<00:00, 2.00it/s, acc=0.737]\n", " 31% 75/242 [01:43<03:47, 1.36s/it, acc=0.998, loss=0.0257]" ] } ] }, { "cell_type": "code", "source": [ "%%shell\n", "python train_supervised_bert.py \\\n", " --pretrain_path HooshvareLab/bert-base-parsbert-uncased \\\n", " --dataset none \\\n", " --train_file ./Perlex/Perlex_train.txt \\\n", " --val_file ./Perlex/Perlex_val.txt \\\n", " --test_file ./Perlex/Perlex_test.txt \\\n", " --rel2id_file ./Perlex/Perlex_rel2id.json \\\n", " --max_epoch 20 \\\n", " --lr 15e-6" ], "metadata": { "id": "_lWuRi4EuuV4", "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "status": "ok", "timestamp": 1668347083563, "user_tz": -210, "elapsed": 441647, "user": { "displayName": "Mohammad Ebrahimi", "userId": "10407139745331958037" } }, "outputId": "4080fb9e-cf2c-498c-a412-a8ba1b44ad74" }, "execution_count": 3, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "100% 101/101 [02:00<00:00, 1.20s/it, acc=0.278, loss=2.4]\n", "100% 25/25 [00:12<00:00, 2.06it/s, acc=0.541]\n", "100% 101/101 [02:11<00:00, 1.30s/it, acc=0.667, loss=1.15]\n", "100% 25/25 [00:12<00:00, 1.97it/s, acc=0.615]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.784, loss=0.721]\n", "100% 25/25 [00:12<00:00, 1.99it/s, acc=0.66]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.879, loss=0.422]\n", "100% 25/25 [00:12<00:00, 2.00it/s, acc=0.656]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.947, loss=0.209]\n", "100% 25/25 [00:12<00:00, 1.98it/s, acc=0.659]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.981, loss=0.0976]\n", "100% 25/25 [00:12<00:00, 1.97it/s, acc=0.655]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.99, loss=0.0528]\n", "100% 25/25 [00:12<00:00, 1.98it/s, acc=0.655]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.997, loss=0.0308]\n", "100% 25/25 [00:12<00:00, 1.96it/s, acc=0.659]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.998, loss=0.0199]\n", "100% 25/25 [00:12<00:00, 1.98it/s, acc=0.657]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.999, loss=0.0145]\n", "100% 25/25 [00:12<00:00, 1.93it/s, acc=0.659]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=1, loss=0.0111]\n", "100% 25/25 [00:12<00:00, 1.97it/s, acc=0.653]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=1, loss=0.00921]\n", "100% 25/25 [00:12<00:00, 1.98it/s, acc=0.658]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=1, loss=0.00797]\n", "100% 25/25 [00:13<00:00, 1.89it/s, acc=0.659]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=1, loss=0.00623]\n", "100% 25/25 [00:12<00:00, 1.97it/s, acc=0.655]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=1, loss=0.00641]\n", "100% 25/25 [00:12<00:00, 1.97it/s, acc=0.65]\n", "100% 101/101 [02:11<00:00, 1.31s/it, acc=1, loss=0.00551]\n", "100% 25/25 [00:12<00:00, 1.99it/s, acc=0.655]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=1, loss=0.00564]\n", "100% 25/25 [00:12<00:00, 1.99it/s, acc=0.655]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=1, loss=0.00474]\n", "100% 25/25 [00:12<00:00, 1.93it/s, acc=0.654]\n", "100% 101/101 [02:12<00:00, 1.31s/it, acc=0.999, loss=0.00528]\n", "100% 25/25 [00:12<00:00, 1.95it/s, acc=0.655]\n", "100% 101/101 [02:11<00:00, 1.31s/it, acc=1, loss=0.00506]\n", "100% 25/25 [00:12<00:00, 1.98it/s, acc=0.653]\n", "100% 43/43 [00:21<00:00, 2.04it/s, acc=0.725]\n", "Test set results:\n", "Accuracy: 0.7245949926362297\n", "Micro precision: 0.7602262837249782\n", "Micro recall: 0.7723253757736517\n", "Micro F1: 0.7662280701754387\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [] }, "metadata": {}, "execution_count": 3 } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "K8ArBYUg1gmV" }, "execution_count": null, "outputs": [] } ] }