add files from Kafi

This commit is contained in:
HamidReza Montazer 2024-12-19 09:58:45 +03:30
parent c93bbd705c
commit 600536794d
4 changed files with 439 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
Data/
.env/

View File

@ -0,0 +1,151 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"this_dir_path = Path().resolve()\n",
"data_path = this_dir_path / \"Data\"\n",
"verb_path = data_path / \"PVC\" / \"Data\" / \"TXT\" / \"verb.txt\"\n",
"processed_past_verb_path = data_path / \"verbs_past_PVC.json\"\n",
"processed_present_verb_path = data_path / \"verbs_present_PVC.json\""
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"with open(verb_path, \"r\") as f:\n",
" lines = f.readlines()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"result: dict[str, list] = {}\n",
"for line in lines:\n",
" verb = line.split(\"@\")[0]\n",
" idx = line.split(\"@\")[1]\n",
" if isinstance(result.get(idx), list):\n",
" result[idx].append(verb)\n",
" else:\n",
" result[idx] = [verb]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"result_simple_past: dict[str, str] = {}\n",
"for line in lines:\n",
" if line.split(\"@\")[2:] == [\n",
" \"ACTIVE\",\n",
" \"SINGULAR\",\n",
" \"FIRST_PERSON\",\n",
" \"POSITIVE\",\n",
" \"م\",\n",
" \"PAST\",\n",
" \"INDICATIVE\",\n",
" \"SIMPLE\\n\",\n",
" ]:\n",
" result_simple_past[line.split(\"@\")[1]] = line.split(\"@\")[0]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"result_simple_past_list = {\n",
" key: value[:-1]\n",
" for key, value in sorted(result_simple_past.items(), key=lambda x: x[1])\n",
"}\n",
"with open(processed_past_verb_path, \"w\", encoding=\"utf-8\") as f:\n",
" json.dump(result_simple_past_list, f, ensure_ascii=False, indent=4)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"result_simple_present: dict[str, str] = {}\n",
"for line in lines:\n",
" if line.split(\"@\")[2:] == [\n",
" \"ACTIVE\",\n",
" \"SINGULAR\",\n",
" \"FIRST_PERSON\",\n",
" \"POSITIVE\",\n",
" \"م\",\n",
" \"PRESENT\",\n",
" \"INDICATIVE\",\n",
" \"SIMPLE\\n\",\n",
" ]:\n",
" result_simple_present[line.split(\"@\")[1]] = line.split(\"@\")[0]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"result_simple_present_list = {\n",
" key: value[:-1]\n",
" for key, value in sorted(result_simple_present.items(), key=lambda x: x[1])\n",
"}\n",
"with open(processed_present_verb_path, \"w\", encoding=\"utf-8\") as f:\n",
" json.dump(result_simple_present_list, f, ensure_ascii=False, indent=4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.15"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,168 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"import hazm\n",
"import json\n",
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"this_dir_path = Path().resolve()\n",
"data_path = this_dir_path / \"Data\"\n",
"past_verb_path = data_path / \"verbs_past_PVC.json\"\n",
"present_verb_path = data_path / \"verbs_present_PVC.json\""
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"with open(past_verb_path, \"r\") as f:\n",
" past_verbs = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"conj = hazm.Conjugation()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['آجیدم', 'آجیدی', 'آجید', 'آجیدیم', 'آجیدید', 'آجیدند']"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conj.perfective_past(past_verbs[\"1\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['نآجیدم', 'نآجیدی', 'نآجید', 'نآجیدیم', 'نآجیدید', 'نآجیدند']\n"
]
},
{
"data": {
"text/plain": [
"['نیاجیدم', 'نیاجیدی', 'نیاجید', 'نیاجیدیم', 'نیاجیدید', 'نیاجیدند']"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(conj.negative_perfective_past(past_verbs[\"1\"]))\n",
"\n",
"\n",
"def negation(verb: str):\n",
" verb = verb.split()\n",
" if verb[-1].startswith(\"آ\"):\n",
" verb[-1] = \"نیا\" + verb[-1][1:]\n",
" else:\n",
" verb[-1] = \"ن\" + verb[-1]\n",
" verb = \" \".join(verb)\n",
" return verb\n",
"\n",
"\n",
"[negation(verb) for verb in conj.perfective_past(past_verbs[\"1\"])]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['آجیده شدم',\n",
" 'آجیده شدی',\n",
" 'آجیده شد',\n",
" 'آجیده شدیم',\n",
" 'آجیده شدید',\n",
" 'آجیده شدند']"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conj.passive_perfective_past(past_verbs[\"1\"])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# فعل‌های متعدی می‌توانند مجهول شوند"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.15"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

118
3.dadegan_noor.ipynb Normal file
View File

@ -0,0 +1,118 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"from bs4 import BeautifulSoup\n",
"from pathlib import Path\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"this_dir_path = Path().resolve()\n",
"data_path = this_dir_path / \"Data\"\n",
"input_verb_path = data_path / \"verbs_noor.txt\"\n",
"htmls_path = data_path / \"htmls_noor\"\n",
"output_verb_path = data_path / \"verbs_noor.json\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open(input_verb_path, \"r\") as f:\n",
" verbs = [verb[:-1] for verb in f.readlines()]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 3/3 [00:01<00:00, 2.62it/s]\n"
]
}
],
"source": [
"for verb in tqdm(verbs):\n",
" response = requests.get(\"http://search.dadegan.ir/\", params={\"q\": verb})\n",
" with open(htmls_path / (verb + \".html\"), \"w\") as f:\n",
" f.write(response.text)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 4167/4167 [00:22<00:00, 186.02it/s]\n"
]
}
],
"source": [
"result = {}\n",
"\n",
"for verb in tqdm(verbs):\n",
" with open(htmls_path / (verb + \".html\"), \"r\") as f:\n",
" text = f.read()\n",
" soup = BeautifulSoup(text, \"html.parser\")\n",
"\n",
" stems = soup.findAll(\"td\", {\"class\": \"c3\"})[1:]\n",
" past_stem = stems[0].text\n",
" present_stem = stems[1].text\n",
"\n",
" result[verb] = {}\n",
"\n",
" result[verb][\"past_stem\"] = past_stem\n",
" result[verb][\"present_stem\"] = present_stem"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.15"
}
},
"nbformat": 4,
"nbformat_minor": 2
}