370 lines
14 KiB
Python
370 lines
14 KiB
Python
from typing import List
|
||
from pathlib import Path
|
||
import os, orjson, time, json, re, asyncio, traceback
|
||
from openai import AsyncOpenAI
|
||
|
||
# --------------------------------------------------------------------
|
||
|
||
|
||
# ------------------------------ پردازش API ------------------------------
|
||
class AsyncCore:
|
||
def __init__(
|
||
self,
|
||
model_name,
|
||
task_name,
|
||
data_path,
|
||
output_schema,
|
||
api_url,
|
||
reasoning_effort,
|
||
top_p,
|
||
temperature,
|
||
max_token,
|
||
output_path=None,
|
||
ai_code_version=None,
|
||
request_timeout=30, # ثانیه
|
||
api_key="EMPTY",
|
||
save_number=2,
|
||
):
|
||
|
||
self.save_number = save_number
|
||
# json file of data
|
||
self.data_path = data_path
|
||
|
||
self.task_name = task_name
|
||
if output_path is None:
|
||
output_path = f"./{task_name}"
|
||
|
||
self.output_path = Path(output_path)
|
||
self._temp_path = self.output_path / "batch_data"
|
||
self._temp_processed_id_path = self._temp_path / "processed_id.json"
|
||
|
||
# Create output directory and subdirectories if they don't exist
|
||
self.output_path.mkdir(parents=True, exist_ok=True)
|
||
self._temp_path.mkdir(parents=True, exist_ok=True)
|
||
# self._temp_processed_id_path.mkdir(parents=True, exist_ok=True)
|
||
|
||
self.request_timeout = request_timeout
|
||
self.model_name = model_name
|
||
self.api_key = api_key
|
||
self.output_schema = output_schema
|
||
self.api_url = api_url
|
||
self.reasoning_effort = reasoning_effort
|
||
self.top_p = top_p
|
||
self.temperature = temperature
|
||
self.max_token = max_token
|
||
|
||
if ai_code_version is None:
|
||
ai_code_version = f"{model_name}_{reasoning_effort}"
|
||
self.ai_code_version = ai_code_version
|
||
|
||
self.PRIMARY_KEY = {"system_prompt", "user_prompt", "id"}
|
||
|
||
try:
|
||
self.data = self.__data_process()
|
||
print(f"📦 Loaded {len(self.data)} words")
|
||
except Exception as e:
|
||
raise ValueError(
|
||
f"Data loading/validation failed: {e}\n{traceback.format_exc()}"
|
||
)
|
||
|
||
def __validate_item(self, item, idx):
|
||
# Mandatory fields
|
||
for key in self.PRIMARY_KEY:
|
||
if key not in item:
|
||
raise ValueError(f"Missing mandatory key '{key}' in item #{idx}")
|
||
if not isinstance(item[key], str):
|
||
raise TypeError(
|
||
f"Item #{idx}: '{key}' must be a string, got {type(item[key]).__name__}"
|
||
)
|
||
|
||
# Optional field: assistant_prompt
|
||
if "assistant_prompt" not in item or item["assistant_prompt"] is None:
|
||
item["assistant_prompt"] = None
|
||
else:
|
||
if not isinstance(item["assistant_prompt"], str):
|
||
raise TypeError(
|
||
f"Item #{idx}: 'assistant_prompt' must be a string or absent, got {type(item['assistant_prompt']).__name__}"
|
||
)
|
||
|
||
return item # now normalized
|
||
|
||
def __data_process(self):
|
||
raw_data = self.__load_orjson(self.data_path)
|
||
if not isinstance(raw_data, list):
|
||
raise ValueError("Data must be a list of dictionaries.")
|
||
|
||
processed_data = []
|
||
for idx, item in enumerate(raw_data):
|
||
if not isinstance(item, dict):
|
||
raise ValueError(f"Item #{idx} is not a dictionary.")
|
||
validated_item = self.__validate_item(item, idx)
|
||
processed_data.append(validated_item)
|
||
|
||
return processed_data
|
||
|
||
def __get_max_number_file(self, directory):
|
||
# Pattern to match filenames like out_1.json, out_25.json, etc.
|
||
pattern = re.compile(r"output_(\d+)\.json$")
|
||
max_num = 0
|
||
|
||
for filename in os.listdir(directory):
|
||
match = pattern.match(filename)
|
||
if match:
|
||
num = int(match.group(1))
|
||
if num > max_num:
|
||
max_num = num
|
||
return max_num + 1
|
||
|
||
def __load_orjson(self, path: str | Path):
|
||
path = Path(path)
|
||
with path.open("rb") as f: # باید باینری باز بشه برای orjson
|
||
return orjson.loads(f.read())
|
||
|
||
def __save_orjson(self, path, data):
|
||
with open(path, "wb") as f:
|
||
f.write(
|
||
orjson.dumps(data, option=orjson.OPT_INDENT_2 | orjson.OPT_NON_STR_KEYS)
|
||
)
|
||
|
||
def merge_json_dir(self, input_path, output_path):
|
||
directory = Path(input_path)
|
||
if not directory.is_dir():
|
||
raise ValueError(f"Not valid PATH: {input_path}")
|
||
|
||
seen_ids = set() # برای ردیابی idهای دیدهشده (سریع!)
|
||
unique_data = [] # فقط دادههای یکتا
|
||
failed_files = []
|
||
|
||
json_files = list(directory.glob("*.json"))
|
||
if not json_files:
|
||
print("⚠️ NO JSON File Found In This PATH")
|
||
return
|
||
|
||
for json_file in json_files:
|
||
try:
|
||
data = self.__load_orjson(json_file)
|
||
if not data: # خالی یا None
|
||
failed_files.append(json_file.name)
|
||
continue
|
||
|
||
if isinstance(data, list) and isinstance(data[0], dict):
|
||
for item in data:
|
||
item_id = item.get("id")
|
||
if item_id is None:
|
||
# اگر id نداشت، میتونی تصمیم بگیری: نگه داری یا ردش کنی
|
||
# اینجا فرض میکنیم فقط مواردی با id معتبر مهم هستند
|
||
continue
|
||
if item_id not in seen_ids:
|
||
seen_ids.add(item_id)
|
||
unique_data.append(item)
|
||
else:
|
||
raise ValueError(f"no list available in this json -> {json_file}")
|
||
except (
|
||
json.JSONDecodeError,
|
||
ValueError,
|
||
OSError,
|
||
KeyError,
|
||
TypeError,
|
||
) as e:
|
||
# print(f"❌ Failed in process '{json_file.name}': {e}")
|
||
failed_files.append(json_file.name)
|
||
|
||
# گزارش خطاها
|
||
if failed_files:
|
||
print("\n❌ We lose this file:")
|
||
for name in failed_files:
|
||
print(f" - {name}")
|
||
else:
|
||
print("\n✅ All JSON added")
|
||
|
||
# ذخیره خروجی
|
||
try:
|
||
self.__save_orjson(data=unique_data, path=output_path)
|
||
print(
|
||
f"\n💾 Final file saved: {output_path} (Total unique items: {len(unique_data)})"
|
||
)
|
||
except Exception as e:
|
||
print(f"❌ Error in saving final file: {e}")
|
||
|
||
def make_new_proccessed_ids_from_file(self, json_in, out_path):
|
||
data = self.__load_orjson(json_in)
|
||
|
||
finall_data = []
|
||
for d in data:
|
||
if d["id"]:
|
||
finall_data.append(d["id"])
|
||
finall_data = set(finall_data)
|
||
finall_data = list(finall_data)
|
||
print(f"-- len ids {len(finall_data)}")
|
||
|
||
self.__save_orjson(data=finall_data, path=out_path)
|
||
|
||
# ------------------------------ Main ------------------------------
|
||
async def __process_item(self, client, item):
|
||
try:
|
||
messages = [
|
||
{"role": "system", "content": item["system_prompt"]},
|
||
{"role": "user", "content": item["user_prompt"]},
|
||
]
|
||
if item.get("assistant_prompt"):
|
||
messages.append(
|
||
{"role": "assistant", "content": item["assistant_prompt"]}
|
||
)
|
||
|
||
response = await client.chat.completions.parse(
|
||
model=self.model_name,
|
||
messages=messages,
|
||
temperature=self.temperature,
|
||
top_p=self.top_p,
|
||
reasoning_effort=self.reasoning_effort,
|
||
max_tokens=self.max_token,
|
||
stop=None,
|
||
response_format=self.output_schema,
|
||
)
|
||
|
||
parsed = (
|
||
response.choices[0].message.parsed
|
||
if response and response.choices and response.choices[0].message.parsed
|
||
else {"raw_text": str(response)}
|
||
)
|
||
|
||
parsed = self.output_schema.model_validate(parsed)
|
||
parsed = dict(parsed)
|
||
parsed["ai_code_version"] = self.ai_code_version
|
||
parsed["id"] = item["id"]
|
||
print(f"parsed")
|
||
return parsed, 200
|
||
|
||
except asyncio.TimeoutError:
|
||
print(f"⏳ Timeout on item {item['id']}")
|
||
return None, 408
|
||
|
||
except Exception as e:
|
||
print(f"⚠️ Error __process_item {item['id']}: {traceback.print_exc()}")
|
||
return None, 400
|
||
|
||
def async_eval(self, processed_id: List = []):
|
||
try:
|
||
asyncio.run(self.__async_eval(processed_id))
|
||
except KeyboardInterrupt:
|
||
print("\n🛑 Interrupted by user.")
|
||
traceback.print_exc()
|
||
|
||
async def __async_eval(self, processed_id: List):
|
||
"""
|
||
اجرای اصلی تکهستهای و async برای تولید خروجی نهایی.
|
||
"""
|
||
print("🔹 Starting async data processing...")
|
||
|
||
# ------------------ مرحله ۱: بازیابی شناسههای قبلاً پردازششده ------------------
|
||
if not processed_id:
|
||
try:
|
||
processed_id = self.__load_orjson(self._temp_processed_id_path)
|
||
print(
|
||
f"📂 Loaded existing processed_id from {self._temp_processed_id_path}"
|
||
)
|
||
except Exception:
|
||
print("⚠️ No valid processed_id found. Starting fresh.")
|
||
processed_id = []
|
||
|
||
# ------------------ مرحله ۲: آمادهسازی دادهها ------------------
|
||
all_processed_id = set(processed_id)
|
||
all_results = []
|
||
total_time = []
|
||
|
||
data = [item for item in self.data if item.get("id") not in all_processed_id]
|
||
print(
|
||
f"➕ Total items: {len(self.data)} - {len(all_processed_id)} = {len(data)}"
|
||
)
|
||
|
||
# اگر چیزی برای پردازش نیست
|
||
if not data:
|
||
print("✅ Nothing new to process. All items are already done.")
|
||
return
|
||
|
||
# ------------------ مرحله ۳: شروع پردازش ------------------
|
||
print(f"🤖 Model: {self.model_name} | Reasoning: {self.reasoning_effort}")
|
||
async with AsyncOpenAI(base_url=self.api_url, api_key=self.api_key) as client:
|
||
semaphore = asyncio.Semaphore(5)
|
||
|
||
async def limited_process(item):
|
||
async with semaphore:
|
||
return await self.__process_item(client, item)
|
||
|
||
tasks = [asyncio.create_task(limited_process(item)) for item in data]
|
||
|
||
total_i = 0
|
||
# ✅ پردازش به ترتیب تکمیل (نه ترتیب لیست)
|
||
for i, task in enumerate(asyncio.as_completed(tasks), start=1):
|
||
start = time.time()
|
||
try:
|
||
parsed, status_code = await asyncio.wait_for(
|
||
task, timeout=self.request_timeout
|
||
) # ⏱ حداکثر 2 دقیقه
|
||
except asyncio.TimeoutError:
|
||
print(f"⏳ Task {i} timed out completely")
|
||
parsed, status_code = None, 408
|
||
total_time.append(time.time() - start)
|
||
|
||
if status_code == 200:
|
||
all_results.append(parsed)
|
||
all_processed_id.add(parsed.get("id"))
|
||
else:
|
||
print(f"⚠️ Skipped item {parsed.get('id')} (status={status_code})")
|
||
|
||
total_i += 1
|
||
# ✅ ذخیرهی موقت هر n مورد
|
||
if total_i >= self.save_number:
|
||
print(f"total_i {total_i}")
|
||
print(f"self.save_number {self.save_number}")
|
||
total_i = 0
|
||
self.__save_orjson(
|
||
data=list(all_processed_id),
|
||
path=self._temp_processed_id_path,
|
||
)
|
||
print(f"💾 Auto-saved processed ids: {len(all_processed_id)}")
|
||
number = self.__get_max_number_file(self._temp_path)
|
||
print(f"number {number}")
|
||
temp_output_path = self._temp_path / f"output_{number}.json"
|
||
self.__save_orjson(data=list(all_results), path=temp_output_path)
|
||
print(f"💾 Auto-saved partial data: {len(all_results)}")
|
||
all_results.clear()
|
||
|
||
# ✅ بعد از پایان تمام تسکها، ذخیره نهایی برای دادههای باقیمانده
|
||
if total_i > 0 or len(all_results) > 0:
|
||
print("💾 Final save of remaining data...")
|
||
self.__save_orjson(
|
||
data=list(all_processed_id),
|
||
path=self._temp_processed_id_path,
|
||
)
|
||
print(f"💾 Auto-saved processed ids: {len(all_processed_id)}")
|
||
number = self.__get_max_number_file(self._temp_path)
|
||
print(f"number {number}")
|
||
|
||
temp_output_path = self._temp_path / f"output_{number}.json"
|
||
self.__save_orjson(data=list(all_results), path=temp_output_path)
|
||
print(f"💾 Auto-saved partial data: {len(all_results)}")
|
||
all_results.clear()
|
||
|
||
# ------------------ مرحله ۴: ذخیره خروجی ------------------
|
||
final_data_path = self.output_path / f"final_data_{self.task_name}.json"
|
||
processed_id_path = self.output_path / "processed_id.json"
|
||
|
||
self.merge_json_dir(input_path=self._temp_path, output_path=final_data_path)
|
||
all_results = self.__load_orjson(final_data_path)
|
||
# make_new_proccessed_ids_from_file()
|
||
self.__save_orjson(data=list(all_processed_id), path=processed_id_path)
|
||
self.__save_orjson(data=all_results, path=final_data_path)
|
||
|
||
avg_time = (sum(total_time) / len(total_time)) if total_time else 0
|
||
print(
|
||
f"\n✅ Processing completed!\n"
|
||
f"📊 Total-Data: {len(data)} | "
|
||
f"⭕ Ignored-Data: {len(processed_id)} | "
|
||
f"📦 Proccessed-Data: {len(all_results)} | "
|
||
f"❌ Loss-Data: {len(data)-len(all_results)} | "
|
||
f"🕒 Avg Time: {avg_time:.2f}'s per item | "
|
||
f"🕒 Total Time: {sum(total_time):.4f}'s | "
|
||
f"💾 Results saved to: {final_data_path}"
|
||
)
|