import pandas as pd from text_normalizer import normalizer import json """word_enter_charachters = {"^p","'^l'"}""" def read_excel_file(file_path): """ Reads an Excel file and returns a list of dictionaries containing the data. """ data = pd.read_excel(file_path) bime_json_list = [] count = 0 for row in data.itertuples(): if count == 102: pass radif = normalizer.normalize_qanon(row[1]).replace('.','') if radif == "": radif = bime_json_list[count-1]['radif'] qanon_title = normalizer.normalize_qanon(row[2]).replace('.','').replace('#!#',' ').strip() if qanon_title == "": qanon_title = bime_json_list[count-1]['qanon_title'] related = normalizer.normalize_qanon(row[3]).replace('.','') if related == "": related = bime_json_list[count-1]['related'] row_structure = { "id": row[0], "radif":radif, "qanon_title": qanon_title, "related": related, "status": normalizer.normalize_qanon(row[4]).replace('#!#',''), "reasons": normalizer.normalize_qanon(row[5]).replace('#!#','\n'), "description": normalizer.normalize_qanon(row[6]), } bime_json_list.append(row_structure) count += 1 return bime_json_list def write_to_json(data_dict, output_path): """ Writes data to a JSON file. """ with open(output_path, 'w', encoding='utf-8') as json_file: json.dump(data_dict, json_file, indent=4, ensure_ascii=False) return True if __name__ == '__main__': data_dict = read_excel_file('./data/bime.xlsx') write_to_json(data_dict, './data/bime.json') print('Done!')