105 lines
3.2 KiB
Python
105 lines
3.2 KiB
Python
import json
|
||
import requests
|
||
from decimal import Decimal
|
||
|
||
TOKEN = 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE3MTg3ODk5OTEsImp0aSI6IlNGaWVOcWIxeEFzZ252QmtvUkxXWU9UbXR2VTNvT3R6IiwiaXNzIjoiaHR0cHM6XC9cL2NwLnRhdmFzaS5pciIsImV4cCI6MTcyMDA4OTk5MCwiYXVkIjoiaHR0cHM6XC9cL2NwLnRhdmFzaS5pciIsImRhdGEiOnsiaWQiOjEsImZpcnN0X25hbWUiOiJcdTA2MjhcdTA2MzFcdTA2NDZcdTA2MjdcdTA2NDVcdTA2NDcgXHUwNjQ2XHUwNjQ4XHUwNmNjXHUwNjMzIiwibGFzdF9uYW1lIjoiXHUwNjQxXHUwNjQ2XHUwNmNjIiwiZW1haWwiOiJkZXZAZ21haWwuY29tIiwidXNlcm5hbWUiOiJkZXYiLCJ1c2VyX2xldmVsIjoyfX0.7DzFqHLee3ZI7EnZYjy5ChtVWhT3QJvBNUbLUdPssSo'
|
||
ACCEPT = "application/json"
|
||
HEADERS = {"Authorization": TOKEN, "Accept": ACCEPT}
|
||
|
||
url = "https://api.tavasi.ir/repo/dataset/multi/add/qasection/keyword"
|
||
headers = HEADERS
|
||
|
||
|
||
# # باز کردن فایل متنی
|
||
# file_path = 'G:/_majles/ner_law_dataset.txt'
|
||
# with open(file_path, 'r', encoding='utf-8') as file:
|
||
# input_text = file.read()
|
||
|
||
# # تبدیل متن به لیستی از خطوط
|
||
# lines = input_text.strip().split('\n')
|
||
|
||
|
||
file_address = './new_law_excel.xlsx'
|
||
# output_file_address = './output/keywords_law_excel.xlsx'
|
||
column_name = "content"
|
||
|
||
contents = read_from_excel(file_address, column_name)
|
||
|
||
contents_list = []
|
||
for index, section in enumerate(contents):
|
||
#ner_values = inference_main(model, section)
|
||
contents_list.append(section)
|
||
# contents_list = contents_list + section + '\n********************\n'
|
||
|
||
new_column_name = 'content_keywords'
|
||
|
||
|
||
|
||
key = ''
|
||
begin = -1
|
||
end = -1
|
||
tokenNumber = -1
|
||
content = ''
|
||
result_token = []
|
||
|
||
class JSONEncoder(json.JSONEncoder):
|
||
def default(self, obj):
|
||
if isinstance(obj, Decimal):
|
||
return float(obj)
|
||
return json.JSONEncoder.default(self, obj)
|
||
|
||
|
||
|
||
# content : main text/content
|
||
# results : keywords list
|
||
def createIndex(content, extracted_keywords):
|
||
result_objects = [{
|
||
"task":"keyword",
|
||
"key":"lama3-8b",
|
||
"label":"لاما3 فارسی شده",
|
||
"values":extracted_keywords
|
||
} ]
|
||
output ={
|
||
"content": content,
|
||
"domain": "مقررات",
|
||
"ref_id": "",
|
||
"ref_url": "",
|
||
"result_objects": result_objects,
|
||
}
|
||
# print(output)
|
||
# print(json.dumps(output, indent=4, ensure_ascii=False))
|
||
return output
|
||
|
||
bulk_data = []
|
||
bulk_count = 1
|
||
count = 0
|
||
|
||
for mentry in contents_list:
|
||
count += 1
|
||
tokenNumber = tokenNumber + 1
|
||
|
||
|
||
extracted_keywords = []
|
||
|
||
data=createIndex(mentry, extracted_keywords)
|
||
bulk_data.append(data)
|
||
bulk_count +=1
|
||
if bulk_data.__len__() > 10:
|
||
print('=' * 10 )
|
||
print('count' + str(count))
|
||
payload = json.dumps(bulk_data, cls=JSONEncoder) #Works!
|
||
response = requests.request("POST", url, headers=headers, data=payload)
|
||
print(response.text)
|
||
bulk_data = []
|
||
bulk_count = 1
|
||
|
||
|
||
if bulk_data.__len__() > 0:
|
||
print(bulk_count)
|
||
payload = json.dumps(bulk_data, cls=JSONEncoder) #Works!
|
||
response = requests.request("POST", url, headers=headers, data=payload)
|
||
print(response.text)
|
||
|
||
|
||
# نمایش دیکشنری خروجی به صورت JSON
|
||
print("***************** end ") |