ai_dataset/main_qa_data/sections15k__add_childorder.py

236 lines
6.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
این کد برای اضافه کردن فیلد child_order
به داده های فایل سکشن های 15 هزارتایی اصلی ایجاد شده است.
"""
from html import escape
from lxml import etree
from datetime import datetime
from elasticsearch import Elasticsearch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer
from threading import Thread
import torch
import time
from concurrent.futures import ThreadPoolExecutor
import concurrent
import threading
import json
import numpy as np
from funcs import write_to_json, read_from_json
import os
index_name_i = 'mj_qa_section-v02'# semantic_search-v10
es = Elasticsearch(
"http://127.0.0.1:6900",
basic_auth=("elastic", "SG*7eGwg+KG2_*-1_mMm")
)
counter = 0
total = 0
remained = 0
id = ''
keywords_count = 15
body_query = "{'query': {'match_all': {}}}"
def es_iterate_all_documents(es, index, pagesize=250, scroll_timeout="25m", **kwargs):
"""
Helper to iterate ALL values from a single index
Yields all the documents.
"""
global counter
global total
is_first = True
while True:
# Scroll next
if is_first: # Initialize scroll
result = es.search(
index=index,
scroll="2m",
**kwargs,
size=pagesize,
body={
"query": {
"bool": {
"must": [
{
"bool": {
"must_not": [
{
"match": {
"other_info.full_path": "موخره"
}
},
{
"match": {
"other_info.full_path": "امضاء"
}
},
{
"match": {
"other_info.full_path": "عنوان"
}
}
]
}
},
{
"bool": {
"filter": {
"bool": {
"must": [
{
"term": {
"qanon_etebar": "معتبر"
}
},
{
"term": {
"title_type": "عادی"
}
},
{
"term": {
"ts_ref.keyword": "مجلس شورای اسلامی"
}
},
{
"term": {
"sub_type": "عادی"
}
}
]
}
}
}
}
]
}
},
"sort": {
"sort_date_timestamp": {
"order": "desc"
}
},
"track_total_hits": True,
"aggs": {
"total_collapse": {
"cardinality": {
"field": "qanon_id"
}
}
}
}
)
total = result["hits"]["total"]["value"]
print("total = %d" % total)
is_first = False
else:
result = es.scroll(scroll_id=scroll_id, scroll=scroll_timeout)
scroll_id = result["_scroll_id"]
hits = result["hits"]["hits"]
counter += len(hits)
print("progress -> %.2f %%" % ((counter / total) * 100))
# Stop after no more docs
if not hits:
break
# Yield each entry
yield from ({"source": hit["_source"], "id": hit["_id"]} for hit in hits)
def add_section(section):
data = ({
"id": section["id"],
"qanon_id": section["qanon_id"],
"content": section["content"],
"main_topic": section["tcode_main_old"][0],
"all_topics": section["tcode_main_old"],
"ts_year": section["ts_year"],
"state_etebar": section["state_etebar"],
"ners": section["ners_v1"]
})
return data
if __name__ == "__main__":
start_time = time.time()
base_address = os.getcwd() # debugger
#base_address = "/home/gpu/tnlp/jokar/llama" # terminal
json_address_15k_sections = base_address + "/data/sections_15k.json"
data15k = read_from_json(json_address_15k_sections)
all_sections = es_iterate_all_documents(es, index_name_i)
all_sections_arr = []
for mentry in all_sections:
section_id = mentry["id"]
source = mentry["source"]
all_sections_arr.append([section_id, source])
# انتقال داده های الستیک به یک لیست نامپای برای سرعت بیشتر جستجو در داده ها
np_sections_arr = np.array(all_sections_arr)
selected_sections = []
index = -1
x = 0
try:
for i, line in enumerate(data15k):
# if i == 813:
# pass
id = line['id']
law_id = line["law_id"]
content = line['content']
try:
# جستجوی شناسه سکشن جاری در داده الستیک
foun_item = np.where(np_sections_arr[:, 0] == id)[0][0]
local_id = np_sections_arr[foun_item][1]["id"]
if not local_id == id:
pass
# دریافت فیلد html
# اگر این فیلد پر باشد، به این معناست که سکشن جاری، دارای جدول است و نباید به فایل اصلی اضافه شود
html = np_sections_arr[foun_item][1]["child_order"]
has_html = False
if html:
has_html = True
# پیدا کردن ترتیب اولویت برای این سکشن بر اساس داده الستیک
child_order = str(int(np_sections_arr[foun_item][1]["child_order"]))
selected_sections.append({
"id": id,
"law_id": law_id,
"content": content,
"child_order": child_order,
"has_html": has_html
})
except Exception as e:
result = -1
print(i+1)
except Exception as inst:
print(type(inst)) # the exception type
print(inst.args) # arguments stored in .args
print(inst) # __str__ allows args to be printed directly,
# but may be overridden in exception subclasses
print("Exception:=> %s -> %.2f " % (id , counter / total))
print(len(selected_sections))
path = "./data/main_sections_15k.json" # os.getcwd() +
write_to_json(selected_sections, path)
end_time = time.time()
print(f"elapsed time: {end_time-start_time} seconds.")
print(" *** finished! *** ")