Compare commits

..

7 Commits

22 changed files with 19868 additions and 3213 deletions

View File

@ -1,28 +1,32 @@
from transformers import AutoTokenizer
import json
file = open('./data/models_info.json', 'r')
models = json.load(file)
file = open('./data/models_ner_info.txt', 'r')
models = file.readlines()
file.close()
# Strips the newline character
text = 'جمهوری موافقت‌نامه معاملات قانون بودجه اساسی قضائی بین‌المللی تأسیس منطقه‌ای لازم‌الاجراء دامپروری راه‌آهن کمیسیون‌های جدیدالاحداث مسئول فرآورده زائد اسقاط پنجساله'
results = []
for line in models:
model_checkpoint = line['model_name']
model_checkpoint = line.split(' -- ')[1].rstrip('\n')
# model_checkpoint = line['model_name']
try:
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
print(model_checkpoint)
tokens = tokenizer.tokenize(text)
print(tokens)
results.append({ 'model': model_checkpoint, 'tokens': tokens})
if len(tokens) == 2 :
file.write( '{'+model_checkpoint + " : [ " + ','.join(tokens) + ' ] }\n' )
#result = tokenizer(text)
#print(result)
#print(tokenizer.decode(result['input_ids']))
print(f'len(tokens): {len(tokens)}')
results.append({ 'model': model_checkpoint, 'len': len(tokens), 'tokens': tokens})
except:
error = "An exception occurred in tokenizer : " + model_checkpoint
#file.write( error + '\n' )
print(error)
#tokenizer.save_pretrained(model_checkpoint+'-tokenizer')
file.close()
with open('./data/models_tokenizer_info.json', 'w', encoding='utf-8') as file:
jsondata = json.dumps(results, ensure_ascii=False, indent=2)
file.write(jsondata)
print('finished!')

View File

@ -0,0 +1,8 @@
HooshvareLab/bert-base-parsbert-ner-uncased
HooshvareLab/bert-fa-base-uncased-ner-peyma
HooshvareLab/bert-base-parsbert-armanner-uncased
HooshvareLab/bert-fa-base-uncased-ner-arman
HooshvareLab/bert-base-parsbert-peymaner-uncased
nicolauduran45/affilgood-ner-multilingual-v2
Amirmerfan/bert-base-uncased-persian-ner-50k-base
AliFartout/Roberta-fa-en-ner

File diff suppressed because it is too large Load Diff

10498
data/models_info0.json Normal file

File diff suppressed because it is too large Load Diff

258
data/models_ner_info.json Normal file
View File

@ -0,0 +1,258 @@
[
{
"model_name": "HooshvareLab/bert-base-parsbert-ner-uncased",
"task": "token-classification",
"last_modified": "2021-5-18",
"downloads": 4060,
"likes": 5,
"language": "fa"
},
{
"model_name": "jplu/tf-xlm-r-ner-40-lang",
"task": "token-classification",
"last_modified": "2022-10-6",
"downloads": 874,
"likes": 27,
"language": "fa"
},
{
"model_name": "nicolauduran45/affilgood-ner-multilingual-v2",
"task": "token-classification",
"last_modified": "2025-4-16",
"downloads": 668,
"likes": 0,
"language": "fa"
},
{
"model_name": "HooshvareLab/bert-fa-zwnj-base-ner",
"task": "token-classification",
"last_modified": "2021-5-18",
"downloads": 407,
"likes": 4,
"language": "fa"
},
{
"model_name": "igorsterner/xlmr-multilingual-sentence-segmentation",
"task": "token-classification",
"last_modified": "2024-10-5",
"downloads": 256,
"likes": 4,
"language": "fa"
},
{
"model_name": "hamedkhaledi/persian-flair-ner",
"task": "token-classification",
"last_modified": "2022-4-3",
"downloads": 230,
"likes": 1,
"language": "fa"
},
{
"model_name": "HooshvareLab/bert-fa-base-uncased-ner-peyma",
"task": "token-classification",
"last_modified": "2021-5-18",
"downloads": 138,
"likes": 8,
"language": "fa"
},
{
"model_name": "mradermacher/persian-question-generator-GGUF",
"task": "Unknown",
"last_modified": "2024-12-8",
"downloads": 110,
"likes": 0,
"language": "fa"
},
{
"model_name": "HooshvareLab/bert-base-parsbert-armanner-uncased",
"task": "token-classification",
"last_modified": "2021-5-18",
"downloads": 103,
"likes": 3,
"language": "fa"
},
{
"model_name": "HooshvareLab/distilbert-fa-zwnj-base-ner",
"task": "token-classification",
"last_modified": "2021-3-21",
"downloads": 101,
"likes": 4,
"language": "fa"
},
{
"model_name": "HooshvareLab/roberta-fa-zwnj-base-ner",
"task": "token-classification",
"last_modified": "2021-5-20",
"downloads": 92,
"likes": 1,
"language": "fa"
},
{
"model_name": "HooshvareLab/bert-fa-base-uncased-ner-arman",
"task": "token-classification",
"last_modified": "2021-5-18",
"downloads": 71,
"likes": 0,
"language": "fa"
},
{
"model_name": "HooshvareLab/albert-fa-zwnj-base-v2-ner",
"task": "token-classification",
"last_modified": "2021-3-21",
"downloads": 58,
"likes": 0,
"language": "fa"
},
{
"model_name": "artificial-nerds/pmnet",
"task": "sentence-similarity",
"last_modified": "2024-10-29",
"downloads": 33,
"likes": 0,
"language": "fa"
},
{
"model_name": "HooshvareLab/bert-base-parsbert-peymaner-uncased",
"task": "token-classification",
"last_modified": "2021-5-18",
"downloads": 28,
"likes": 0,
"language": "fa"
},
{
"model_name": "Erfan/mT5-base_Farsi_Title_Generator",
"task": "text-generation",
"last_modified": "2022-1-30",
"downloads": 24,
"likes": 2,
"language": "fa"
},
{
"model_name": "myrkur/persian-question-generator",
"task": "summarization",
"last_modified": "2024-12-10",
"downloads": 24,
"likes": 2,
"language": "fa"
},
{
"model_name": "m3hrdadfi/albert-fa-base-v2-ner-arman",
"task": "token-classification",
"last_modified": "2020-12-26",
"downloads": 21,
"likes": 3,
"language": "fa"
},
{
"model_name": "hezarai/bert-fa-ner-arman",
"task": "token-classification",
"last_modified": "2024-11-14",
"downloads": 17,
"likes": 0,
"language": "fa"
},
{
"model_name": "m3hrdadfi/albert-fa-base-v2-ner-peyma",
"task": "token-classification",
"last_modified": "2020-12-26",
"downloads": 16,
"likes": 1,
"language": "fa"
},
{
"model_name": "Amirmerfan/bert-base-uncased-persian-ner-50k-base",
"task": "token-classification",
"last_modified": "2025-3-18",
"downloads": 16,
"likes": 0,
"language": "fa"
},
{
"model_name": "tum-nlp/neural-news-generator-bloomz-7b1-fa",
"task": "text-generation",
"last_modified": "2024-8-15",
"downloads": 14,
"likes": 0,
"language": "fa"
},
{
"model_name": "dadashzadeh/test-trainer-persian",
"task": "text-classification",
"last_modified": "2023-11-13",
"downloads": 11,
"likes": 0,
"language": "fa"
},
{
"model_name": "tum-nlp/neural-news-generator-llama-7b-fa",
"task": "text-generation",
"last_modified": "2024-8-15",
"downloads": 11,
"likes": 0,
"language": "fa"
},
{
"model_name": "AliFartout/Roberta-fa-en-ner",
"task": "token-classification",
"last_modified": "2023-9-1",
"downloads": 9,
"likes": 0,
"language": "fa"
},
{
"model_name": "myrkur/persian-title-generator",
"task": "summarization",
"last_modified": "2024-6-13",
"downloads": 9,
"likes": 2,
"language": "fa"
},
{
"model_name": "NLPclass/mt5-title-generation",
"task": "text-generation",
"last_modified": "2024-7-24",
"downloads": 9,
"likes": 0,
"language": "fa"
},
{
"model_name": "SinaRp/Question_generator_persian",
"task": "text-generation",
"last_modified": "2024-11-8",
"downloads": 9,
"likes": 1,
"language": "fa"
},
{
"model_name": "mansoorhamidzadeh/mt5-title-generation",
"task": "text-generation",
"last_modified": "2024-7-24",
"downloads": 8,
"likes": 0,
"language": "fa"
},
{
"model_name": "dz5035/bicleaner-ai-full-large-de-xx",
"task": "Unknown",
"last_modified": "2024-6-3",
"downloads": 4,
"likes": 0,
"language": "fa"
},
{
"model_name": "m0javad/conversational_Persian_paraphrase_generation",
"task": "Unknown",
"last_modified": "2024-2-17",
"downloads": 0,
"likes": 0,
"language": "fa"
},
{
"model_name": "PranavKeshav/event-planner-gemma-4bit",
"task": "text-generation",
"last_modified": "2025-5-17",
"downloads": 0,
"likes": 0,
"language": "fa"
}
]

17
data/models_ner_info.txt Normal file
View File

@ -0,0 +1,17 @@
4060 -- HooshvareLab/bert-base-parsbert-ner-uncased
874 -- jplu/tf-xlm-r-ner-40-lang
668 -- nicolauduran45/affilgood-ner-multilingual-v2
407 -- HooshvareLab/bert-fa-zwnj-base-ner
230 -- hamedkhaledi/persian-flair-ner
138 -- HooshvareLab/bert-fa-base-uncased-ner-peyma
103 -- HooshvareLab/bert-base-parsbert-armanner-uncased
101 -- HooshvareLab/distilbert-fa-zwnj-base-ner
92 -- HooshvareLab/roberta-fa-zwnj-base-ner
71 -- HooshvareLab/bert-fa-base-uncased-ner-arman
58 -- HooshvareLab/albert-fa-zwnj-base-v2-ner
28 -- HooshvareLab/bert-base-parsbert-peymaner-uncased
21 -- m3hrdadfi/albert-fa-base-v2-ner-arman
17 -- hezarai/bert-fa-ner-arman
16 -- m3hrdadfi/albert-fa-base-v2-ner-peyma
16 -- Amirmerfan/bert-base-uncased-persian-ner-50k-base
9 -- AliFartout/Roberta-fa-en-ner

View File

@ -0,0 +1,465 @@
[
{
"model": "HooshvareLab/bert-base-parsbert-ner-uncased",
"len": 20,
"tokens": [
"جمهوری",
"موافقتنامه",
"معاملات",
"قانون",
"بودجه",
"اساسی",
"قضايی",
"بینالمللی",
"تاسیس",
"منطقهای",
"لازمالاجراء",
"دامپروری",
"راهاهن",
"کمیسیونهای",
"جدیدالاحداث",
"مسيول",
"فراورده",
"زايد",
"اسقاط",
"پنجساله"
]
},
{
"model": "nicolauduran45/affilgood-ner-multilingual-v2",
"len": 39,
"tokens": [
"▁جمهوری",
"▁موافقت",
"▁نامه",
"▁معاملات",
"▁قانون",
"▁بودجه",
"▁اساسی",
"▁قضا",
"ئی",
"▁بین",
"▁المللی",
"▁تأسیس",
"▁منطقه",
"▁ای",
"▁لازم",
"▁الاج",
"راء",
"▁دام",
"پر",
"وری",
"▁راه",
"▁آهن",
"▁کمیسیون",
"▁های",
"▁جدید",
"الا",
"حد",
"اث",
"▁مسئول",
"▁فر",
"آور",
"ده",
"▁زائد",
"▁اس",
"ق",
"اط",
"▁پنج",
"سال",
"ه"
]
},
{
"model": "HooshvareLab/bert-fa-zwnj-base-ner",
"len": 37,
"tokens": [
"جمهوری",
"موافقت",
"[ZWNJ]",
"نامه",
"معاملات",
"قانون",
"بودجه",
"اساسی",
"[UNK]",
"بین",
"[ZWNJ]",
"المللی",
"[UNK]",
"منطقه",
"[ZWNJ]",
"ای",
"لازم",
"[ZWNJ]",
"الاجرا",
"##ء",
"دامپروری",
"راه",
"[ZWNJ]",
"آ",
"##هن",
"کمیسیون",
"[ZWNJ]",
"های",
"جدیدا",
"##لاح",
"##داث",
"[UNK]",
"[UNK]",
"[UNK]",
"اسقاط",
"پنج",
"##ساله"
]
},
{
"model": "HooshvareLab/bert-fa-base-uncased-ner-peyma",
"len": 20,
"tokens": [
"جمهوری",
"موافقتنامه",
"معاملات",
"قانون",
"بودجه",
"اساسی",
"قضايی",
"بینالمللی",
"تاسیس",
"منطقهای",
"لازمالاجراء",
"دامپروری",
"راهاهن",
"کمیسیونهای",
"جدیدالاحداث",
"مسيول",
"فراورده",
"زايد",
"اسقاط",
"پنجساله"
]
},
{
"model": "HooshvareLab/bert-base-parsbert-armanner-uncased",
"len": 20,
"tokens": [
"جمهوری",
"موافقتنامه",
"معاملات",
"قانون",
"بودجه",
"اساسی",
"قضايی",
"بینالمللی",
"تاسیس",
"منطقهای",
"لازمالاجراء",
"دامپروری",
"راهاهن",
"کمیسیونهای",
"جدیدالاحداث",
"مسيول",
"فراورده",
"زايد",
"اسقاط",
"پنجساله"
]
},
{
"model": "HooshvareLab/distilbert-fa-zwnj-base-ner",
"len": 37,
"tokens": [
"جمهوری",
"موافقت",
"[ZWNJ]",
"نامه",
"معاملات",
"قانون",
"بودجه",
"اساسی",
"[UNK]",
"بین",
"[ZWNJ]",
"المللی",
"[UNK]",
"منطقه",
"[ZWNJ]",
"ای",
"لازم",
"[ZWNJ]",
"الاجرا",
"##ء",
"دامپروری",
"راه",
"[ZWNJ]",
"آ",
"##هن",
"کمیسیون",
"[ZWNJ]",
"های",
"جدیدا",
"##لاح",
"##داث",
"[UNK]",
"[UNK]",
"[UNK]",
"اسقاط",
"پنج",
"##ساله"
]
},
{
"model": "HooshvareLab/roberta-fa-zwnj-base-ner",
"len": 37,
"tokens": [
"ĠجÙħÙĩÙĪØ±ÛĮ",
"ĠÙħÙĪØ§ÙģÙĤت",
"âĢĮ",
"ÙĨاÙħÙĩ",
"ĠÙħعاÙħÙĦات",
"ĠÙĤاÙĨÙĪÙĨ",
"ĠبÙĪØ¯Ø¬Ùĩ",
"ĠاساسÛĮ",
"ĠÙĤضائÛĮ",
"ĠبÛĮÙĨ",
"âĢĮ",
"اÙĦÙħÙĦÙĦÛĮ",
"ĠتأسÛĮس",
"ĠÙħÙĨØ·ÙĤÙĩ",
"âĢĮ",
"اÛĮ",
"ĠÙĦازÙħ",
"âĢĮ",
"اÙĦاج",
"راء",
"ĠداÙħپرÙĪØ±ÛĮ",
"ĠراÙĩ",
"âĢĮ",
"Ø¢ÙĩÙĨ",
"ĠÚ©ÙħÛĮسÛĮÙĪÙĨ",
"âĢĮ",
"ÙĩاÛĮ",
"ĠجدÛĮد",
"اÙĦ",
"اØŃ",
"داث",
"ĠÙħسئÙĪÙĦ",
"ĠÙģØ±Ø¢ÙĪØ±Ø¯Ùĩ",
"Ġزائد",
"ĠاسÙĤاط",
"ĠÙ¾ÙĨج",
"ساÙĦÙĩ"
]
},
{
"model": "HooshvareLab/bert-fa-base-uncased-ner-arman",
"len": 20,
"tokens": [
"جمهوری",
"موافقتنامه",
"معاملات",
"قانون",
"بودجه",
"اساسی",
"قضايی",
"بینالمللی",
"تاسیس",
"منطقهای",
"لازمالاجراء",
"دامپروری",
"راهاهن",
"کمیسیونهای",
"جدیدالاحداث",
"مسيول",
"فراورده",
"زايد",
"اسقاط",
"پنجساله"
]
},
{
"model": "HooshvareLab/albert-fa-zwnj-base-v2-ner",
"len": 46,
"tokens": [
"▁جمهوری",
"▁موافقت",
"[ZWNJ]",
"نامه",
"▁معاملات",
"▁قانون",
"▁بودجه",
"▁اساسی",
"▁قضا",
"ي",
"ی",
"▁بین",
"[ZWNJ]",
"الم",
"لل",
"ی",
"▁تاسیس",
"▁منطقه",
"[ZWNJ]",
"ای",
"▁لازم",
"[ZWNJ]",
"ال",
"اجرا",
"ء",
"▁دامپروری",
"▁راه",
"[ZWNJ]",
"اهن",
"▁کمیسیون",
"[ZWNJ]",
"های",
"▁جدید",
"الا",
"حد",
"اث",
"▁مس",
"ي",
"ول",
"▁فراورده",
"▁زا",
"ي",
"د",
"▁اسقاط",
"▁پنج",
"ساله"
]
},
{
"model": "HooshvareLab/bert-base-parsbert-peymaner-uncased",
"len": 20,
"tokens": [
"جمهوری",
"موافقتنامه",
"معاملات",
"قانون",
"بودجه",
"اساسی",
"قضايی",
"بینالمللی",
"تاسیس",
"منطقهای",
"لازمالاجراء",
"دامپروری",
"راهاهن",
"کمیسیونهای",
"جدیدالاحداث",
"مسيول",
"فراورده",
"زايد",
"اسقاط",
"پنجساله"
]
},
{
"model": "Amirmerfan/bert-base-uncased-persian-ner-50k-base",
"len": 56,
"tokens": [
"جمهوری",
"م",
"##وا",
"##فق",
"##تن",
"##ام",
"##ه",
"مع",
"##امل",
"##ات",
"قانون",
"بود",
"##جه",
"اساسی",
"ق",
"##ضا",
"##يی",
"بینالمللی",
"تاسیس",
"منطقه",
"##ای",
"لازم",
"##ال",
"##اج",
"##راء",
"دا",
"##م",
"##پر",
"##وری",
"راه",
"##اه",
"##ن",
"کمی",
"##سی",
"##ون",
"##های",
"جدید",
"##ال",
"##اح",
"##دا",
"##ث",
"م",
"##سي",
"##ول",
"ف",
"##را",
"##ورد",
"##ه",
"ز",
"##ايد",
"اس",
"##قا",
"##ط",
"پنج",
"##سال",
"##ه"
]
},
{
"model": "AliFartout/Roberta-fa-en-ner",
"len": 39,
"tokens": [
"▁جمهوری",
"▁موافقت",
"▁نامه",
"▁معاملات",
"▁قانون",
"▁بودجه",
"▁اساسی",
"▁قضا",
"ئی",
"▁بین",
"▁المللی",
"▁تأسیس",
"▁منطقه",
"▁ای",
"▁لازم",
"▁الاج",
"راء",
"▁دام",
"پر",
"وری",
"▁راه",
"▁آهن",
"▁کمیسیون",
"▁های",
"▁جدید",
"الا",
"حد",
"اث",
"▁مسئول",
"▁فر",
"آور",
"ده",
"▁زائد",
"▁اس",
"ق",
"اط",
"▁پنج",
"سال",
"ه"
]
}
]

BIN
db/persian_nlp_model.db Normal file

Binary file not shown.

BIN
fonts/B Nazanin Bold.ttf Normal file

Binary file not shown.

BIN
fonts/B Nazanin.ttf Normal file

Binary file not shown.

BIN
fonts/B-NAZANIN.TTF Normal file

Binary file not shown.

BIN
fonts/NotoSansArabic.ttf Normal file

Binary file not shown.

BIN
fonts/consola.ttf Normal file

Binary file not shown.

BIN
fonts/consolab.ttf Normal file

Binary file not shown.

BIN
fonts/consolai.ttf Normal file

Binary file not shown.

BIN
fonts/consolaz.ttf Normal file

Binary file not shown.

View File

@ -1,7 +1,11 @@
from huggingface_hub import HfApi, ModelFilter
from huggingface_hub import HfApi
from huggingface_hub import ModelCard
from huggingface_hub import ModelFilter
import json
api = HfApi()
# card = ModelCard.load('model-name')
# persian languages tags
languages = ['pes', 'fas', 'fa'] # Language codes for Persian, Pashto, and Turkish

View File

@ -1,173 +0,0 @@
from huggingface_hub import HfApi
import json
import datetime
# تعریف تسک‌های رایج NLP
nlp_task_list = [
"text-classification",
"token-classification",
"question-answering",
"summarization",
"translation",
"text-generation",
"fill-mask",
"zero-shot-classification",
"feature-extraction",
"sentence-similarity",
"text2text-generation",
"conversational"
]
def persian_model_finder(nlp_tasks,json_file_name):
api = HfApi()
all_persian_nlp_models_data = []
seen_model_ids = set() # برای جلوگیری از اضافه شدن مدل‌های تکراری
print("در حال جستجو و استخراج اطلاعات مدل‌های NLP فارسی...")
# فیلتر کردن و پیمایش روی مدل‌ها
# برای هر تسک NLP، مدل‌های فارسی را جستجو می‌کنیم.
# محدودیت 500 مدل برای هر تسک در نظر گرفته شده است تا از دانلود بیش از حد جلوگیری شود.
# اگر می‌خواهید همه مدل‌ها را استخراج کنید، ممکن است نیاز به پیجینیشن (pagination) باشد.
for task in nlp_tasks:
print(f" جستجو برای تسک: {task} (زبان: فارسی)...")
try:
models_for_task = api.list_models(
language="fa",
task=task,
sort="downloads",
direction=-1, # نزولی (از بیشترین دانلود به کمترین)
limit=None # می‌توانید این عدد را تغییر دهید
)
for model_info in models_for_task:
if model_info.id not in seen_model_ids:
try : # اگر از کارت مدل توانست اطلاعات بیشتری به دست بیاورد :
model_ = api.model_info(model_info.id) # به دست آوردن شناسه مدل
card_data_dict = model_.card_data.to_dict() # از روی کارت مدل که شامل اطلاعات مدل میباشد یک دیکشنری میسازیم
model_data = {
"model_id": model_info.id,
"url": f"https://huggingface.co/{model_info.id}",
"downloads": model_info.downloads,
"private": model_info.private,
"author": model_info.author,
"tags": model_info.tags, # شامل زبان‌ها، تسک‌ها، لایبرری‌ها و...
"tag_dataset":"-",
"tag_base_model":"-",
"tag_license":"-",
"tag_region":"-",
"pipeline_tag": model_info.pipeline_tag, # تسک اصلی مدل که توسط هاب تعیین شده
"Likes":model_info.likes,
# چهار مورد پایینی از روی دیکشنری کارت مدل خوانده میشود
"languages":card_data_dict.get('language', 'N/A'), # زبان هایی که پشتیبانی میشود
"library":card_data_dict.get('library', 'N/A'), # کتابخانه های مورد استفاده
"datasets":card_data_dict.get('datasets', 'N/A'), # دیتابیس های مورد استفاده
"license":card_data_dict.get('license', 'N/A'),
"just_persian" : False
}
if model_data["library"] == 'N/A': # در بعضی موارد کتابخانه به این نام ('library_name') در دیکشنری کارت مدل ذخیره شده
model_data["library"] = card_data_dict.get('library_name', 'N/A')
# شرط پایینی ، مواردی که فقط مختص زبان فارسی هستند را در دیکشنری مشخص میکند
if len(model_data["languages"]) == 2 and "multilingual" in model_data["languages"] or\
len(model_data["languages"]) == 2 and "persian" in model_data["languages"] or\
len(model_data["languages"]) == 2 and "farsi" in model_data["languages"] or\
len(model_data["languages"]) == 2 and "fas" in model_data["languages"] or\
len(model_data["languages"]) == 2 and model_data["languages"]=="fa" or\
model_data["languages"] == "persian" or\
model_data["languages"] == "farsi" or\
model_data["languages"] == "fas" or\
model_data["languages"] == "pes" or\
len(model_data["languages"]) == 1 :
model_data["just_persian"] = True
for value in model_data["tags"]:
if "dataset:" in value :
if type(model_data["tag_dataset"]) == type(""):
model_data["tag_dataset"] = list(model_data["tag_dataset"])
model_data["tag_dataset"].pop(0)
model_data["tag_dataset"].append(f"{str(value).replace("dataset:","")}")
if "base_model:" in value :
if type(model_data["tag_base_model"]) == type(""):
model_data["tag_base_model"] = list(model_data["tag_base_model"])
model_data["tag_base_model"].pop(0)
model_data["tag_base_model"].append(f"{str(value).replace("base_model:","")}")
if "region:" in value :
model_data["tag_region"]=f"{str(value).replace("region:","")}"
if "license:" in value :
model_data["tag_license"]=f"{str(value).replace("license:","")}"
all_persian_nlp_models_data.append(model_data)
seen_model_ids.add(model_info.id)
except : # اگر استفاده از کارت مدل با مشکل مواجه شد :
model_data = {
"model_id": model_info.id,
"url": f"https://huggingface.co/{model_info.id}",
"downloads": model_info.downloads,
"private": model_info.private,
"author": model_info.author,
"tags": model_info.tags, # شامل زبان‌ها، تسک‌ها، لایبرری‌ها و...
"pipeline_tag": model_info.pipeline_tag, # تسک اصلی مدل که توسط هاب تعیین شده
"Likes":model_info.likes,
"library":model_info.library_name,
# افزودن لایسنس اگر موجود باشد
"license": model_info.card_data.license if model_info.card_data and model_info.card_data.license else "N/A"
}
for value in model_data["tags"]:
if "dataset:" in value :
if type(model_data["tag_dataset"]) == type(""):
model_data["tag_dataset"] = list(model_data["tag_dataset"])
model_data["tag_dataset"].pop(0)
model_data["tag_dataset"].append(f"{str(value).replace("dataset:","")}")
if "base_model:" in value :
if type(model_data["tag_base_model"]) == type(""):
model_data["tag_base_model"] = list(model_data["tag_base_model"])
model_data["tag_base_model"].pop(0)
model_data["tag_base_model"].append(f"{str(value).replace("base_model:","")}")
if "region:" in value :
model_data["tag_region"]=f"{str(value).replace("region:","")}"
if "license:" in value :
model_data["tag_license"]=f"{str(value).replace("license:","")}"
all_persian_nlp_models_data.append(model_data)
seen_model_ids.add(model_info.id)
print(f" تعداد مدل‌های یافت شده برای تسک '{task}': {len(models_for_task)}")
except Exception as e:
print(f" خطا در جستجو برای تسک {task}: {e}")
# مرتب‌سازی نهایی مدل‌ها بر اساس تعداد دانلود (کل لیست)
# این مرحله اطمینان می‌دهد که حتی اگر مدل‌ها از تسک‌های مختلف جمع‌آوری شده باشند،
# در نهایت بر اساس دانلود مرتب شده باشند.
all_persian_nlp_models_data_sorted = sorted(all_persian_nlp_models_data, key=lambda x: x['downloads'], reverse=True)
print(f"\nتعداد کل مدل‌های NLP فارسی منحصربه‌فرد یافت شده: {len(all_persian_nlp_models_data_sorted)}")
# ذخیره اطلاعات در یک فایل JSON
output_json_file = f"{json_file_name}"
with open(output_json_file, "w", encoding="utf-8") as f:
json.dump(all_persian_nlp_models_data_sorted, f, ensure_ascii=False, indent=4)
print(f"اطلاعات {len(all_persian_nlp_models_data_sorted)} مدل در فایل '{output_json_file}' ذخیره شد.")
persian_model_finder(nlp_task_list,"persian_nlp_models_info.json")

3
important_tokenizers.txt Normal file
View File

@ -0,0 +1,3 @@
facebook/xlm-v-base
sharif-dal/dal-bert
lifeweb-ai/shiraz

30
model_filter.py Normal file
View File

@ -0,0 +1,30 @@
import json
with open('./data/models_info.json', 'r', encoding='utf-8') as file:
models = json.load(file)
ner_models = []
for mdl in models:
if mdl['model_name'].__contains__('ner') or mdl['model_name'].__contains__('Ner') or mdl['model_name'].__contains__('Ner'):
ner_models.append(mdl)
# [mdl['model_name']]= {
# "task": mdl['task'],
# "last_modified": mdl['last_modified'],
# "downloads": int(mdl['downloads']),
# "likes": mdl['likes'],
# "language": mdl['language']
# }
sorted_ner_models = sorted(ner_models, key=lambda x: x["downloads"], reverse=True)
with open('./data/models_ner_info.json', 'w', encoding='utf-8') as file:
jsondata = json.dumps(sorted_ner_models, ensure_ascii=False, indent=2)
file.write(jsondata)
ner_models_text = ''
for mdl in sorted_ner_models:
ner_models_text += ''.join(f"{mdl['downloads']} -- {mdl['model_name']}\n")
with open('./data/models_ner_info.txt', 'w', encoding='utf-8') as file:
file.write(ner_models_text)
print(len(ner_models))

View File

@ -1,58 +1,83 @@
#بسم الله
from apscheduler.schedulers.background import BackgroundScheduler
from transformers import AutoTokenizer
from bidi.algorithm import get_display
from huggingface_hub import HfApi
import matplotlib.pyplot as plt
from fastapi import FastAPI
from datetime import date
import arabic_reshaper
from fpdf import FPDF
import threading
import random
import logging
import sqlite3
import string
import os
# تنظیم لاگ‌دهی برای دیدن خروجی زمان‌بندی
logging.basicConfig(level=logging.INFO)
logging.getLogger('apscheduler').setLevel(logging.INFO)
first_id = 6600
text = 'جمهوری موافقت‌نامه معاملات قانون بودجه اساسی قضائی بین‌المللی تأسیس منطقه‌ای لازم‌الاجراء دامپروری راه‌آهن کمیسیون‌های جدیدالاحداث مسئول فرآورده زائد اسقاط پنجساله'
list1 = ["ID","model_id","url","downloads","private","author","tags","tag_dataset",\
"tag_base_model","tag_license","tag_region","pipeline_tag","Likes","languages",\
"library","datasets","license","just_persian","deleted","date_added"]
cnt = sqlite3.connect("persian_nlp_model.db")
"library","datasets","license","just_persian","deleted","date_added","last_modified"]
cnt = sqlite3.connect(".\\db\\persian_nlp_model.db", check_same_thread=False)
c = cnt.cursor()
today = date.today()
d1 = today.strftime("%d-%m-%Y")
create_tables=True
if create_tables == True :
try:
# فقط برای اولین بار که جدول قرار است ساخته شود از این کد ها استفاده شود
# c.execute("""CREATE TABLE PersianNlp(
# ID INT PRIMARY KEY ,
# model_id TEXT ,
# url TEXT ,
# downloads INT,
# private TEXT,
# author TEXT,
# tags TEXT,
# tag_dataset TEXT,
# tag_base_model TEXT,
# tag_license TEXT,
# tag_region TEXT,
# pipeline_tag TEXT,
# Likes INT,
# languages TEXT,
# library TEXT,
# datasets TEXT,
# license TEXT,
# just_persian TEXT,
# deleted TEXT,
# date_added TEXT
# );""")
c.execute("""CREATE TABLE PersianNlp(
ID INT PRIMARY KEY ,
model_id TEXT ,
url TEXT ,
downloads INT,
private TEXT,
author TEXT,
tags TEXT,
tag_dataset TEXT,
tag_base_model TEXT,
tag_license TEXT,
tag_region TEXT,
pipeline_tag TEXT,
Likes INT,
languages TEXT,
library TEXT,
datasets TEXT,
license TEXT,
just_persian TEXT,
deleted TEXT,
date_added TEXT,
last_modified TEXT
);""")
# برای ساخت جدول میزان دانلود ها از این کد استفاده شود
# c.execute("""CREATE TABLE downloadCountHistory(
# ID INT PRIMARY KEY ,
# key_id INT ,
# downloads INT,
# date TEXT
# );""")
c.execute("""CREATE TABLE downloadCountHistory(
ID INT PRIMARY KEY ,
key_id INT ,
downloads INT,
date TEXT
);""")
create_tables = False
except Exception as e:
print("--- یک خطای غیرمنتظره در ساخت تیبل رخ داد ---")
print(f"متن خطا: {e}")
@ -89,13 +114,357 @@ def generate_random_id(length=10, chars=string.ascii_letters + string.digits):
# 3. تعریف تابع کمکی برای پردازش متن فارسی
def process_text_for_fpdf(text):
# مرحله 1: تغییر شکل حروف (اتصال و شکل صحیح)
reshaped_text = arabic_reshaper.reshape(text)
# مرحله 2: بازآرایی برای نمایش راست به چپ
bidi_text = get_display(reshaped_text)
return bidi_text
def add_download_count():
count = 1
api = HfApi()
allModel = c.execute(f'''SELECT * FROM "PersianNlp"
WHERE deleted != 'True' ;''')
all_model_id = []
for model in allModel:
all_model_id.append([model[0],model[1]])
for id_ in all_model_id:
# try:
print(count)
count+=1
id_12_digits = generate_random_id(length=12, chars=string.digits)
model_details = api.model_info(repo_id=id_[1])
c.execute(f"""INSERT INTO downloadCountHistory(ID,key_id,downloads,date)
VALUES ({id_12_digits},"{int(id_[0])}","{int(model_details.downloads)}","{str(d1)}");""")
# c.execute(f"""INSERT INTO downloadCountHistory(ID,key_id,downloads,date)
# VALUES ({id_12_digits},"{int(id_[0])}","{int(model_details.downloads)+1}","22-08-2025");""")
cnt.commit()
# except:
# print("Error!!")
# add_download_count()
def MultiModelInfo(limit_number=10):
today = date.today()
date_year = today.strftime("%Y")
date_month = today.strftime("%m")
month = int(date_month)
year = int(date_year)
Models_added_this_month=[]
Models_deleted=[]
all_id_download = []
all_download = []
growth_slope_list_info = []
growth_slope_list = []
model_info = c.execute(f'''SELECT *
FROM PersianNlp''')
for model in model_info:
if int(model[19].split("/")[1]) == month and int(model[19].split("/")[2]) == year :
Models_added_this_month.append(model[1])
if str(model[18]) == "True":
Models_deleted.append(model[1])
all_id_download.append([model[0],model[1],model[3],model[11],model[20]])
listX=[]
for model in all_id_download:
downloadCountHistory = c.execute(f'''SELECT *
FROM downloadCountHistory
WHERE key_id = {model[0]}''')
for models in downloadCountHistory :
if int(models[3].split("-")[1]) == month and int(models[3].split("-")[2]) == year :
model[2]=models[2]
listX.append(model)
all_id_download = listX
for model in all_id_download:
all_download.append(model[2])
all_download.sort(reverse=True)
maximum_download_list = all_download[0:limit_number]
maximum_download_info_list = []
n=0
for DCount in maximum_download_list:
for model in all_id_download:
if DCount == model[2]:
if n < limit_number :
maximum_download_info_list.append(model)
n+=1
# پیدا کردن بیشترین شیب دانلود ها در چند ماه :
for model in all_id_download:
growth_slope = []
DHList =c.execute(f'''SELECT *
FROM "downloadCountHistory"
WHERE key_id = {model[0]}''')
for data in DHList:
growth_slope.append(data[2])
growth_slopee , lenM = find_growth_slope(growth_slope) # به دست آوردن درصد رشد هر مدل
growth_slope_list.append(growth_slopee)
growth_slope_list_info.append([model[1],growth_slopee,lenM,model[2],model[3]])
growth_slope_list.sort(reverse=True)
maximum_growth_slope_list = growth_slope_list[0:limit_number]
maximum_growth_slope_info_list = []
n=0
for DCount in maximum_growth_slope_list:
for model in growth_slope_list_info:
if DCount == model[1]:
if n < limit_number :
maximum_growth_slope_info_list.append(model)
n+=1
# پایان پیدا کردن شیب
model_id_list = []
model_download_count_list = []
for info in maximum_download_info_list:
model_download_count_list.append(info[2])
model_id_list.append(str(info[1]))
listA = []
for x in model_download_count_list:
listA.append(int(x)/1000000)
model_download_count_list = listA
plt.plot(model_id_list,model_download_count_list,marker='o', linestyle='-')
plt.xticks(rotation=30, ha='right', fontsize=10)
plt.xlabel("Model Name", color='blue')
plt.ylabel("Download Count (milion)" ,color='red')
plt.tight_layout()
plt.savefig(f'Top_{limit_number}_download_rate.png', dpi=300)
pdf = FPDF()
pdf.add_page()
pdf.add_font('B Nazanin', '', '.\\fonts\\B Nazanin.ttf', uni=True)
pdf.set_font("Arial", size=16)
# اضافه کردن متن
pdf.multi_cell(0, 10, f"Top {limit_number} Model Information : \n ----------------------------------------------------------------")
pdf.set_font("Arial", size=12)
pdf.ln()
pdf.multi_cell(0, 5, f" Download Rate Chart :")
pdf.ln()
# اضافه کردن عکس
pdf.image(f'Top_{limit_number}_download_rate.png', x=10, y=pdf.get_y() + 5, w=70)
pdf.ln(20) # یک خط فاصله بعد از عکس
# اضافه کردن جدول
pdf.ln(50)
pdf.ln()
pdf.multi_cell(0, 5, f" Download Rate Table :")
pdf.ln()
# سربرگ جدول
for header in ['Count', 'Model_name','Download-rate','Task','Last_modified']:
if header == 'Model_name':
pdf.cell(80, 10, header, 1, 0, 'C')
else:
pdf.cell(40, 10, header, 1, 0, 'C')
pdf.ln()
# ردیف‌های داده
x=1
for row in maximum_download_info_list:
n=0
row[0] = x
x+=1
for item in row:
if n == 1 :
pdf.set_font("Arial", size=6)
pdf.cell(80, 10, f"https://huggingface.co/{str(item)}", 1, 0, 'C')
n+=1
else:
pdf.set_font("Arial", size=10)
pdf.cell(40, 10, str(item), 1, 0, 'C')
n+=1
pdf.ln()
pdf.add_page()
model_name_list = []
model_growth = []
for info in maximum_growth_slope_info_list:
model_name_list.append(info[0])
model_growth.append(round(info[1], 2) )
pdf.ln()
pdf.multi_cell(0, 5, f" Download Growth Chart :")
pdf.ln()
plt.figure(figsize=(8, 6)) # تنظیم اندازه کلی نمودار (عرض و ارتفاع بر حسب اینچ)
plt.bar(model_name_list,model_growth,color='lightgreen', width=0.4)
plt.xticks(rotation=30, ha='right', fontsize=10)
plt.xlabel("Model Name", color='blue')
plt.ylabel("Model Growth (%)" ,color='red')
plt.tight_layout()
plt.savefig(f'Top_{limit_number}_growth_rate.png', dpi=300)
pdf.image(f'Top_{limit_number}_growth_rate.png', x=10, y=pdf.get_y() + 5, w=70)
pdf.ln(80) # یک خط فاصله بعد از عکس
pdf.ln()
pdf.multi_cell(0, 5, f" Download Growth Table :")
pdf.ln()
# سربرگ جدول
for header in [ 'Model_name','Growth-rate','Length-month','Download-rate','Task']:
if header == 'Model_name':
pdf.cell(80, 10, header, 1, 0, 'C')
else:
pdf.cell(30, 10, header, 1, 0, 'C')
pdf.ln()
# ردیف‌های داده
x=1
for row in maximum_growth_slope_info_list:
n=0
x+=1
for item in row:
if n == 0 :
pdf.set_font("Arial", size=6)
pdf.cell(80, 10, f"https://huggingface.co/{str(item)}", 1, 0, 'C')
n+=1
else:
pdf.set_font("Arial", size=6)
pdf.cell(30, 10, str(item), 1, 0, 'C')
n+=1
pdf.ln()
pdf.add_page()
pdf.ln()
pdf.set_font("Arial", size=14)
pdf.multi_cell(0, 5, f"Models added this month :")
pdf.set_font("Arial", size=6)
pdf.ln()
txt=''
n=1
for model_name in Models_added_this_month:
txt +=f"{n} --> {model_name}\n"
n+=1
pdf.multi_cell(0, 5, f"{txt}")
pdf.ln()
pdf.set_font("Arial", size=14)
pdf.multi_cell(0, 5, f"Models deleted :")
pdf.set_font("Arial", size=6)
pdf.ln()
txt=''
n=1
for model_name in Models_deleted:
txt +=f"{n} --> {model_name}\n"
n+=1
pdf.multi_cell(0, 5, f"{txt}")
pdf.output(f"MultiModelInfo_{today}.pdf")
os.remove(f'Top_{limit_number}_download_rate.png')
os.remove(f'Top_{limit_number}_growth_rate.png')
# MultiModelInfo(5)
def find_growth_slope(number_list):
try:
n = -1
index = 0
# if n == -1:
last_num = number_list[-1]
first_num = number_list[-1]
if number_list[-1] <= number_list[-2]:
for num in range(len(number_list)-1):
if number_list[n-num] <= number_list[n-num-1]:
last_num = number_list[n-num-1]
index = n-num-1
else:
break
if number_list[-1] >= number_list[-2] and last_num >= first_num:
for num in range(len(number_list)-1):
if number_list[n-num] >= number_list[n-num-1]:
last_num = number_list[n-num-1]
index = n-num-1
else:
break
percentage_growth = ((first_num - last_num) / last_num) * 100
except:
percentage_growth = 0
return percentage_growth ,abs(index)
# find_growth_slope([15,16,17,16,10,8])
# x = find_growth_slope([1,2,3,4,5,6,7,8,10])
# c = find_growth_slope([8,8,9,10,8,8,7])
# v = find_growth_slope([8,8,7,5,4,6,7,7])
# print("finish!")
def persian_model_finder(nlp_tasks,idx):
today = date.today()
download_date = today.strftime("%d/%m/%Y")
idX = idx # اخرین آیدی موجود در دیتابیس را وارد میکنیم تا موارد جدید با آیدی های قبلی تداخل نکند
api = HfApi()
all_persian_nlp_models_data = []
# all_persian_nlp_models_data = []
seen_model_ids = set() # برای جلوگیری از اضافه شدن مدل‌های تکراری
new_seen_ids = set()
for task in nlp_tasks:
models_for_task = api.list_models(
language="fa",
task=task,
sort="downloads",
direction=-1, # نزولی (از بیشترین دانلود به کمترین)
limit=None # می‌توانید این عدد را تغییر دهید
)
for model_info in models_for_task:
new_seen_ids.add(model_info.id)
print("در حال جستجو و استخراج اطلاعات مدل‌های NLP فارسی...")
@ -107,8 +476,12 @@ def persian_model_finder(nlp_tasks,idx):
try:
allModel = c.execute(f'''SELECT *
FROM PersianNlp''')
idX+=1
for model in allModel:
seen_model_ids.add(model[1])
idX+=1
except:
print("database not find!")
@ -129,6 +502,7 @@ FROM PersianNlp''')
idX+=1
# try : # اگر از کارت مدل توانست اطلاعات بیشتری به دست بیاورد :
model_ = api.model_info(model_info.id) # به دست آوردن شناسه مدل
lastModified = api.model_info(repo_id=model_info.id).last_modified
card_data_dict = model_.card_data.to_dict() # از روی کارت مدل که شامل اطلاعات مدل میباشد یک دیکشنری میسازیم
model_data = {
"model_id": model_info.id,
@ -150,7 +524,8 @@ FROM PersianNlp''')
"license":card_data_dict.get('license', 'N/A'),
"just_persian" : "False",
"deleted" : "False",
"date_added" : f"{download_date}"
"date_added" : f"{download_date}",
"last_modified" : f"{str(lastModified.strftime("%d-%m-%Y"))}"
}
@ -191,16 +566,29 @@ FROM PersianNlp''')
# all_persian_nlp_models_data.append(model_data)
c.execute(f"""INSERT INTO PersianNlp (ID,model_id,url,downloads,private,author,tags,tag_dataset,tag_base_model,tag_license,tag_region,pipeline_tag,Likes,languages,library,datasets,license,just_persian,deleted,date_added)
VALUES ({idX},"{model_data["model_id"]}","{model_data["url"]}",{model_data["downloads"]},"{model_data["private"]}","{model_data["author"]}","{model_data["tags"]}","{model_data["tag_dataset"]}","{model_data["tag_base_model"]}","{model_data["tag_license"]}","{model_data["tag_region"]}","{model_data["pipeline_tag"]}",{model_data["Likes"]},"{model_data["languages"]}","{model_data["library"]}","{model_data["datasets"]}","{model_data["license"]}","{model_data["just_persian"]}","{model_data["deleted"]}","{model_data["date_added"]}");""")
c.execute(f"""INSERT INTO PersianNlp (ID,model_id,url,downloads,private,author,tags,tag_dataset,tag_base_model,tag_license,tag_region,pipeline_tag,Likes,languages,library,datasets,license,just_persian,deleted,date_added,last_modified)
VALUES ({idX},"{model_data["model_id"]}","{model_data["url"]}",{model_data["downloads"]},"{model_data["private"]}","{model_data["author"]}","{model_data["tags"]}","{model_data["tag_dataset"]}","{model_data["tag_base_model"]}","{model_data["tag_license"]}","{model_data["tag_region"]}","{model_data["pipeline_tag"]}",{model_data["Likes"]},"{model_data["languages"]}","{model_data["library"]}","{model_data["datasets"]}","{model_data["license"]}","{model_data["just_persian"]}","{model_data["deleted"]}","{model_data["date_added"]}","{model_data['last_modified']}");""")
cnt.commit()
seen_model_ids.add(model_info.id)
print(f"\nتعداد کل مدل‌های NLP فارسی منحصربه‌فرد یافت شده: {len(seen_model_ids)}")
#اول لیست تسک ها را میدهیم برای جست و جو ، و بعد آخرین آیدی که در تیبل مدلها در دیتابیس موجود است
# persian_model_finder(nlp_task_list,8288)
for modelID in seen_model_ids:
if modelID not in new_seen_ids:
c.execute(f'''UPDATE PersianNlp
SET deleted = 'True'
WHERE model_id = '{modelID}';''')
cnt.commit()
add_download_count()
MultiModelInfo()
#اول لیست تسک ها را میدهیم برای جست و جو ، و بعد اولین آیدی که در تیبل مدلها در دیتابیس موجود است
# persian_model_finder(nlp_task_list,6600)
@ -299,28 +687,165 @@ FROM PersianNlp''')
def add_download_count():
def singleModelInfo( model_id_ ,month_later = 6 , year_later = 0 ):
count = 1
api = HfApi()
allModel = c.execute(f'''SELECT *
FROM PersianNlp''')
all_model_id = []
for model in allModel:
all_model_id.append([model[0],model[1]])
for id_ in all_model_id:
today = date.today()
date_year = today.strftime("%Y")
date_month = today.strftime("%m")
month = int(date_month)
year = int(date_year)
model_info = c.execute(f'''SELECT *
FROM PersianNlp
WHERE model_id = "{model_id_}"''')
for model in model_info:
m = model
model_id = m[0]
last_modyfied = m[20]
Likes = m[12]
task = m[11]
downloadCountHistory = c.execute(f'''SELECT *
FROM downloadCountHistory
WHERE key_id = {model_id}''')
n=0
downloads_list = []
download_count_list = []
download_date_list = []
for model in downloadCountHistory :
if int(model[3].split("-")[1]) >= month-month_later and int(model[3].split("-")[2]) >= year-year_later :
download_count_list.append(model[2])
download_date_list.append(model[3])
downloads_list.append([model[3],model[2]])
growth_slope , lenM = find_growth_slope(download_count_list)
plt.plot(download_date_list,download_count_list, marker='o', linestyle='-')
plt.savefig('Download_rate_chart.png', dpi=300)
pdf = FPDF()
pdf.add_page()
pdf.add_font('B Nazanin', '', '.\\fonts\\B Nazanin.ttf', uni=True)
pdf.set_font("Arial", size=12)
# اضافه کردن متن
pdf.multi_cell(0, 10, f"Model -<< https://huggingface.co/{model_id_} >>- Information :")
pdf.ln()
pdf.multi_cell(0, 5, f"Download rate chart : ")
pdf.ln()
# اضافه کردن عکس
pdf.image("Download_rate_chart.png", x=10, y=pdf.get_y() + 5, w=70)
pdf.ln(20) # یک خط فاصله بعد از عکس
# pdf.cell(0, 10, " Download history chart ", ln=True, align='C')
# اضافه کردن جدول
pdf.ln(50)
pdf.ln()
pdf.multi_cell(0, 5, f"Download rate table : ")
pdf.ln()
# سربرگ جدول
for header in ['Date', 'Download-rate']:
pdf.cell(40, 10, header, 1, 0, 'C')
pdf.ln()
pdf.set_font("Arial", size=10)
# ردیف‌های داده
for row in downloads_list:
for item in row:
pdf.cell(40, 10, str(item), 1, 0, 'C')
pdf.ln()
pdf.ln()
tokenizer = AutoTokenizer.from_pretrained(model_id_)
tokens = tokenizer.tokenize(text)
print(tokens)
print(f'len(tokens): {len(tokens)}')
results = {'model': model_id_, 'len': len(tokens), 'tokens': tokens }
# results = str(results).encode('latin-1', 'replace').decode('latin-1')
# results = str(results).replace("▁","")
pdf.multi_cell(0, 3, f"Likes : {str(Likes)}")
pdf.ln()
pdf.multi_cell(0, 3, f"last_modyfied : {str(last_modyfied)}")
pdf.ln()
pdf.multi_cell(0, 3, f"Growth slope : {round(growth_slope, 2)} in {lenM} month .")
pdf.ln()
pdf.multi_cell(0, 7, f"task : {task}")
pdf.ln()
pdf.set_font("Arial", size=16)
pdf.multi_cell(0, 5, f"Tokenize info : ")
pdf.ln()
pdf.set_font("Arial", size=10)
pdf.multi_cell(0, 3, f"len : {str(results['len'])}")
pdf.ln()
pdf.multi_cell(0, 3, "tokenized list : ")
pdf.ln()
txt = ''
for token in results["tokens"]:
txt += f' [ {token} ] '
pdf.set_font("B Nazanin", size=10)
pdf.multi_cell(0, 5, f"{process_text_for_fpdf(txt)}",align='R')
pdf.output("singleModelInfo.pdf")
print("فایل PDF با FPDF ایجاد شد.")
os.remove("Download_rate_chart.png")
# singleModelInfo("amberoad/bert-multilingual-passage-reranking-msmarco")
# --- بخش ادغام با FastAPI و APScheduler ---
app = FastAPI()
scheduler = BackgroundScheduler()
# یک تابع برای دریافت آخرین ID قبل از اجرای job
# def get_last_id():
# try:
print(count)
count+=1
id_12_digits = generate_random_id(length=12, chars=string.digits)
model_details = api.model_info(repo_id=id_[1])
c.execute(f"""INSERT INTO downloadCountHistory(ID,key_id,downloads,date)
VALUES ({id_12_digits},"{int(id_[0])}","{int(model_details.downloads)}","{str(d1)}");""")
cnt.commit()
# except:
# print("Error!!")
# last_id = c.execute("SELECT MAX(ID) FROM PersianNlp").fetchone()[0]
# return last_id if last_id is not None else 0
# except sqlite3.OperationalError:
# return 0
# add_download_count()
# تعریف کار زمان‌بندی شده: اجرای persian_model_finder در روز آخر هر ماه
def scheduled_job():
idx = first_id
print(f"شروع اجرای کار زمان‌بندی شده. آخرین ID: {idx}")
persian_model_finder(nlp_task_list, idx)
print("کار زمان‌بندی شده با موفقیت به پایان رسید.")
# scheduler.add_job(scheduled_job, 'cron', day='1', hour='0', minute='0')
# scheduler.add_job(scheduled_job, 'interval', minutes=5) # هر بیست دقیقه تابع رو اجرا میکنه که برای تست درست کار کردن هستش و الا کامنت بشه
scheduler.add_job(scheduled_job, 'cron', day='last', hour='0', minute='0') # آخرین روز هرماه رو به عنوان زمان بندی قرار میده
# رویداد startup: شروع زمان‌بندی هنگام روشن شدن سرور
@app.on_event("startup")
def startup_event():
print("رویداد startup: سرور در حال راه‌اندازی است و زمان‌بندی شروع می‌شود.")
scheduler.start()
print("زمان‌بندی فعال شد.")
# رویداد shutdown: خاموش کردن زمان‌بندی هنگام خاموش شدن سرور
@app.on_event("shutdown")
def shutdown_event():
print("رویداد shutdown: سرور در حال خاموش شدن است و زمان‌بندی متوقف می‌شود.")
scheduler.shutdown()
@app.get("/")
def read_root():
return {"message": "FastAPI service is running and the scheduler is active."}
@app.get("/run_monthly_job_now")
def run_job_manually():
print("درخواست برای اجرای دستی کار ماهانه دریافت شد...")
# اجرای کار در یک ترد مجزا برای جلوگیری از مسدود شدن سرور
threading.Thread(target=scheduled_job).start()
return {"message": "Monthly job has been triggered manually."}