learning_rate = 0.65e-4 # 0.65e-4 - 0.4e-4 mini_batch_size = 8 max_epochs = 200 from funcs import save_to_file_by_address import json import os from pathlib import Path from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import TransformerWordEmbeddings from flair.models import SequenceTagger from flair.trainers import ModelTrainer from flair.models import SequenceTagger from flair.embeddings import TransformerDocumentEmbeddings #model = os.getcwd() + "\\data\\final-model.pt" #model = os.getcwd() + "/data/HooshvareLab--distilbert-fa-zwnj-base-ner" # مدل اولیه که تست شد و تا حدود 70 درصد در آخرین آموزش خوب جواب می داد #model = os.getcwd() + "/data/distilbert-base-multilingual-cased-tavasi" # model = "HooshvareLab/bert-fa-base-uncased-ner-peyma" # model = "PooryaPiroozfar/Flair-Persian-NER" # 111111111111111 ## --------------------------------------------------------- ## --- آخرین کار مورد استفاده در سامانه قانون یار از این آموزش دیده است #model = "orgcatorg/xlm-v-base-ner" # بهترین توکنایزر فارسی *********************** ## --------------------------------------------------------- # model = AutoModel.from_pretrained("/home/gpu/HFHOME/hub/models--orgcatorg--xlm-v-base-ner") #model = "pourmand1376/NER_Farsi" # #model = "HooshvareLab/bert-base-parsbert-ner-uncased" # **** خوب جواب داد #model = "SeyedAli/Persian-Text-NER-Bert-V1" # ***** خیلی خوب جواب داد #model = "HooshvareLab/bert-base-parsbert-peymaner-uncased" # جالب نبود! #model = "HooshvareLab/bert-base-parsbert-armanner-uncased" # جالب نبود! """ HooshvareLab/bert-base-parsbert-ner-uncased HooshvareLab/bert-fa-base-uncased-ner-peyma HooshvareLab/bert-base-parsbert-armanner-uncased HooshvareLab/bert-fa-base-uncased-ner-arman HooshvareLab/bert-base-parsbert-peymaner-uncased HooshvareLab/distilbert-fa-zwnj-base-ner nicolauduran45/affilgood-ner-multilingual-v2 - error Amirmerfan/bert-base-uncased-persian-ner-50k-base - error AliFartout/Roberta-fa-en-ner - error """ model = 'HooshvareLab/bert-base-parsbert-ner-uncased' print(model) print('#'*50) print('#'*50) #!pip install 'flair==0.10' # define columns columns = {0 : 'text', 1 : 'ner'} # directory where the data resides data_folder = './data/' # initializing the corpuscorpus = ColumnCorpus(data_folder, columns, train_file='peyma_train.txt', sequence_length=512) #اسم دیتاست اینجا تنظیم شود corpus = ColumnCorpus(data_folder, columns, #train_file = 'peyma_train.txt') train_file = 'DATASET140402_no_aref.txt', # qavanin 36K tokens test_file = 'test_ds_new.txt',) # test 110 sections - 6.7K #dev_file = 'dev split 2.txt' #max_sentence_length=500 #) # tag to predict tag_type = 'ner' # make tag dictionary from the corpus tag_dictionary = corpus.make_label_dictionary(label_type=tag_type) #xlm-roberta-large # embeddings = TransformerWordEmbeddings(model='HooshvareLab/distilbert-fa-zwnj-base-ner', embeddings = TransformerWordEmbeddings(model= model, layers="-1", subtoken_pooling="first", # pooling='mean', fine_tune=True, use_context=True, from_tf=True, allow_long_sentences=True # model_max_length=512, ) print('model read successfully !') print('#'*50) print('#'*50) try: tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary= tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False ) except Exception as e: print(str(e.args[0])) exit() from flair.trainers import ModelTrainer try: trainer = ModelTrainer(tagger, corpus) #resources/taggers/sota-ner-flert # trainer.fine_tune('./taggers', # learning_rate=2.0e-6, # mini_batch_size=16, # # mini_batch_chunk_size=1, # remove this parameter to speed up computation if you have a big GPU # max_epochs=20 # ) except Exception as e: print(str(e.args[0])) exit() try: result = trainer.fine_tune('./taggers', learning_rate= learning_rate, mini_batch_size= mini_batch_size, max_epochs= max_epochs ) except Exception as e: print(str(e.args[0])) exit() try: # Save the model's state dictionary (configuration + weights) #model_state_dict_path = Path('./trained/best-model.pt') # Assuming best model is saved here #tagger.save(model_state_dict_path) # Optionally, save additional hyperparameters to a separate file (e.g., training.json) hyperparameters = { "learning_rate": learning_rate, "mini_batch_size": mini_batch_size, "max_epochs": max_epochs, } with open('./trained/training.json', 'w') as f: json.dump(hyperparameters, f, indent=4) except Exception as e: exit() try: from train_log_plotter import plot_diagram plot_diagram() except: print('log diagram failed due to error!') train_result = f'''************************************************\n ##### TRAIN RESULT ##### F1 Score: {result} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n''' # اجرای اینفرنس جهت ارزیابی مدل # time = datetime.datetime.now() # tagger.save('./trained/trained-model ' + str(time) + '.pt') print('#'*70) print( ' ********** fine-tune operation finished ********** ') import datetime operation_time = datetime.datetime.now() print(f' ********** {operation_time} ********** ') print('#'*70) # ################################################### # تست مدل بر یک مقدار مشخص شده print(' Try to test trained model! ') from inference import inference_main inference_main(model,'') print(' Testing model finished! ') # ################################################### # ارزیابی مدل آموزش دیده try: from evaluate_model import do_evaluate print(' Try to evaluating the trained model! ') evaluate_result = do_evaluate() print(' Evaluating finished! ') except Exception as e: print('do_evaluate function failed') evaluate_result = f"do_evaluate function failed!\nerror massage:\n{str(e.args[0])}" final_result = f"""Model Name: {model} Fine-Tune Parameters: {hyperparameters} {train_result} {evaluate_result}\n Fine_Tune time: {operation_time} ------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------\n """ save_to_file_by_address('./data/train_log.txt', final_result) print(' Saving results finished! ')