from transformers import AutoModelForSequenceClassification from transformers import AutoModel, AutoConfig # Transformers version: 4.38.2 import torch def convert_model(model_path,new_model_name): # مسیر مدل Hugging Face huggingface_model_path = model_path # مسیر مدل PyTorch که می‌خواهید مدل را در آن ذخیره کنید pytorch_model_path = "./data/" + new_model_name + ".pt" ##config = AutoConfig.from_pretrained(huggingface_model_path) # بارگذاری مدل از فرمت Hugging Face ##model = AutoModel.from_pretrained(huggingface_model_path, config=config) # Load the model config = AutoModelForSequenceClassification.from_pretrained(huggingface_model_path) model = AutoModelForSequenceClassification.from_pretrained(huggingface_model_path, config=config) # Save the model # model.save_pretrained(pytorch_model_path, output_format="torch") # ذخیره مدل در فرمت PyTorch # save_pretrained(model, pytorch_model_path) torch.save(model, pytorch_model_path) # config.save_pretrained("./data/") print('Model saved!') path = "G:\\Projects\\NLP\\Flair_NER\\models backup\\models--xlm-roberta-base\\snapshots\\e73636d4f797dec63c3081bb6ed5c7b0bb3f2089" # path = "G:/Projects/NLP\Flair_NER/data/xlm-roberta-base" # from transformers import XLMRobertaForSequenceClassification # # بارگیری مدل # model = XLMRobertaForSequenceClassification.from_pretrained(path,use_crf=True) # # ذخیره مدل به فرمت پایتورچ # # model.save_pytorch("./data/xlm-roberta-base.pt")#, output_format="torch" # torch.save(model.state_dict(), "./data/xlm-roberta-base.pt") # from transformers import AutoModel, AutoTokenizer, AutoConfig, T5Config # loaded_model_path = "HooshvareLab-bert-fa-base-uncased-finetuned-2" # loaded_model_path_out = "output/HooshvareLab-bert-fa-base-uncased-finetuned-2-pt" # config = AutoConfig.from_pretrained(loaded_model_path) # auto_model = AutoModel.from_pretrained(loaded_model_path, config=config, from_tf=True) # auto_model.save_pretrained(loaded_model_path_out) ############################################################################ loaded_model_path = "./Models" loaded_model_path_out = "./data/bert-base-multilingual-cased.pt" from transformers import AutoModel, AutoTokenizer, AutoConfig, T5Config config = AutoConfig.from_pretrained(loaded_model_path) auto_model = AutoModel.from_pretrained(loaded_model_path, config=config)# from_tf=True auto_model.save_pretrained(loaded_model_path_out)#, output_format="torch" ############################################################################ # # مسیر مدل با پسوند safetensors # safetensors_model_path = "G:\\Projects\\NLP\\Flair_NER\\models backup\\models--xlm-roberta-base\\snapshots\\e73636d4f797dec63c3081bb6ed5c7b0bb3f2089/model.safetensors" # # بارگذاری مدل safetensors # safetensors_model = torch.load(safetensors_model_path, map_location='cpu') # # ذخیره مدل به صورت PyTorch با پسوند .pt # torch.save(safetensors_model, "./data/model__1.pt") ############################################################################ # from torch.jit import load # # بارگیری مدل SafeTensors # # model = load("./Models") # model = torch.load("./data/Models") # # تبدیل مدل به PT # model_pt = model.to_pt() # # ذخیره مدل PT # torch.save(model_pt, "model000001.pt") ############################################################################ convert_model("./Models","xlm-roberta-base")