2024-09-18 16:35:06 +00:00
|
|
|
from elasticsearch7 import Elasticsearch
|
|
|
|
from general_functions import save_error
|
|
|
|
from ner_proccess import inference_main
|
|
|
|
import os
|
|
|
|
from funcs import save_to_file_by_address, read_file_by_address, write_to_json
|
|
|
|
|
|
|
|
# ##################################
|
|
|
|
# برای محتوای مواد و احکام قانون که از معاونت قوانین مجلس در ایندکس الاستیک ذخیره شده است
|
|
|
|
# qanon_section-v02
|
|
|
|
# تحلیل روی بعضی فیلدها می کند و تاریخ های آن را استخراج و تبدیل به فرمت خاص تایم استمپ می کند
|
|
|
|
# و در فیدل مناسب در همان ایندکس الاستیک ذخیره میکند
|
|
|
|
# توجه : دسترسی به الاستیک باید باشد
|
|
|
|
# ##################################
|
|
|
|
|
|
|
|
|
|
|
|
index_name_i = "semantic_search-v09" # الاستیک موجود روی جی پی یو
|
|
|
|
# index_name_o = 'mj_qa_test-v01'
|
|
|
|
# is_update_state = False
|
|
|
|
index_name_o = "ai_mj_qa_section-v05"
|
|
|
|
is_update_state = False
|
|
|
|
|
|
|
|
|
|
|
|
mapping_o = ""
|
|
|
|
|
|
|
|
es = Elasticsearch(
|
|
|
|
"http://127.0.0.1:6900",
|
|
|
|
basic_auth=("elastic", "SG*7eGwg+KG2_*-1_mMm")
|
|
|
|
)
|
|
|
|
|
|
|
|
try:
|
|
|
|
if not es.indices.exists(index=index_name_o):
|
|
|
|
response = es.indices.create(index=index_name_o, body=mapping_o)
|
|
|
|
# print out the response:
|
|
|
|
print("create index response:", response)
|
|
|
|
except:
|
|
|
|
print("elastic error")
|
|
|
|
|
|
|
|
counter = 0
|
|
|
|
total = 0
|
|
|
|
id = ""
|
|
|
|
|
|
|
|
|
|
|
|
def es_iterate_all_documents(es, index, pagesize=250, scroll_timeout="25m", **kwargs):
|
|
|
|
"""
|
|
|
|
Helper to iterate ALL values from a single index
|
|
|
|
Yields all the documents.
|
|
|
|
"""
|
|
|
|
global counter
|
|
|
|
global total
|
|
|
|
is_first = True
|
|
|
|
while True:
|
|
|
|
# Scroll next
|
|
|
|
if is_first: # Initialize scroll
|
|
|
|
# result = es.search(index=index, scroll="2m", **kwargs, body={
|
|
|
|
# "size": pagesize
|
|
|
|
# })
|
|
|
|
result = es.search(
|
|
|
|
index=index,
|
|
|
|
scroll="2m",
|
|
|
|
**kwargs,
|
|
|
|
size=pagesize,
|
|
|
|
body={
|
|
|
|
"query": {
|
|
|
|
"bool": {
|
|
|
|
"must_not": [
|
|
|
|
{"exists": {"field": "nlp_parser.type"}},
|
|
|
|
{"match": {"content_len": 0}},
|
|
|
|
{"match": {"parse_state": 1}},
|
|
|
|
{"match": {"parse_state": 2}}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
total = result["hits"]["total"]["value"]
|
|
|
|
print("total = %d" % total)
|
|
|
|
is_first = False
|
|
|
|
else:
|
|
|
|
result = es.scroll(scroll_id=scroll_id, scroll=scroll_timeout)
|
|
|
|
scroll_id = result["_scroll_id"]
|
|
|
|
hits = result["hits"]["hits"]
|
|
|
|
counter += len(hits)
|
|
|
|
print("progress -> %.2f %%" % ((counter / total) * 100))
|
|
|
|
# Stop after no more docs
|
|
|
|
if not hits:
|
|
|
|
break
|
|
|
|
# Yield each entry
|
|
|
|
yield from ({"source": hit["_source"], "id": hit["_id"]} for hit in hits)
|
|
|
|
|
|
|
|
def es_iterate_some_documents(es, index, records, pagesize=250, scroll_timeout="25m", **kwargs):
|
|
|
|
|
|
|
|
global counter
|
|
|
|
global total
|
|
|
|
is_first = True
|
|
|
|
query = {
|
|
|
|
"query": {
|
|
|
|
"terms": {
|
|
|
|
"_id": records
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while True:
|
|
|
|
# Scroll next
|
|
|
|
if is_first: # Initialize scroll
|
|
|
|
# result = es.search(index=index, scroll="2m", **kwargs, body={
|
|
|
|
# "size": pagesize
|
|
|
|
# })
|
|
|
|
result = es.search(
|
|
|
|
index=index,
|
|
|
|
scroll="2m",
|
|
|
|
**kwargs,
|
|
|
|
size=pagesize,
|
|
|
|
body= query
|
|
|
|
)
|
|
|
|
total = result["hits"]["total"]["value"]
|
|
|
|
print("total = %d" % total)
|
|
|
|
is_first = False
|
|
|
|
else:
|
|
|
|
result = es.scroll(scroll_id=scroll_id, scroll=scroll_timeout)
|
|
|
|
scroll_id = result["_scroll_id"]
|
|
|
|
hits = result["hits"]["hits"]
|
|
|
|
counter += len(hits)
|
|
|
|
print("progress -> %.2f %%" % ((counter / total) * 100))
|
|
|
|
# Stop after no more docs
|
|
|
|
if not hits:
|
|
|
|
break
|
|
|
|
# Yield each entry
|
|
|
|
yield from ({"source": hit["_source"], "id": hit["_id"]} for hit in hits)
|
|
|
|
|
|
|
|
def prepare_data(ner_obj_list):
|
|
|
|
ner_data_list = []
|
|
|
|
for ner_obj in ner_obj_list:
|
|
|
|
ner_data = {
|
|
|
|
"key" :ner_obj['ner_key'],
|
|
|
|
"value" :ner_obj['ner_value'],
|
|
|
|
"begin" :ner_obj['ner_start_token'],
|
|
|
|
"end" :ner_obj['ner_end_token'],
|
|
|
|
"score" :ner_obj['ner_score']
|
|
|
|
}
|
|
|
|
|
|
|
|
ner_data_list.append(ner_data)
|
|
|
|
return ner_data_list
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
|
|
|
|
# رکوردهایی که قبلا با خطا مواجه شده در آدرس زیر قرار دارد
|
2024-12-01 15:03:40 +00:00
|
|
|
# address3 = os.getcwd() + '/data/ner_reg_error_ids.txt'
|
|
|
|
section_list_text = read_file_by_address('/data/ner_reg_error_ids.txt')
|
2024-09-18 16:35:06 +00:00
|
|
|
records = section_list_text.splitlines()
|
|
|
|
|
|
|
|
list = es_iterate_all_documents(es, index_name_i)
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
print(' reading from elastic error! ')
|
|
|
|
save_error(0, e)
|
|
|
|
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
novalid = -15000000000
|
|
|
|
|
|
|
|
for mentry in list:
|
|
|
|
try:
|
|
|
|
count += 1
|
|
|
|
id = mentry["id"]
|
|
|
|
if not id in records:
|
|
|
|
print(id + ' exists')
|
|
|
|
continue
|
|
|
|
entry = mentry["source"]
|
|
|
|
content = entry.get("content", "")
|
|
|
|
content_len = entry.get("content_len", "")
|
|
|
|
qanon_id = entry.get("qanon_id", "")
|
|
|
|
# qid = int(qanon_id.replace('mj_qa_qavanin_',''))
|
|
|
|
# if qid < 84996:
|
|
|
|
# continue
|
|
|
|
except:
|
|
|
|
pass
|
2024-12-01 15:03:40 +00:00
|
|
|
|
2024-09-18 16:35:06 +00:00
|
|
|
|
|
|
|
print('ner task --------------> ' + str(count))
|
|
|
|
# if count > 1000 :
|
|
|
|
# break
|
|
|
|
|
|
|
|
if content_len == 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
try:
|
|
|
|
#model_name = 'orgcatorg/xlm-v-base-ner *** learning_rate=0.5e-4 # mini_batch_size = 10 # max_epochs = 10'
|
|
|
|
ner_obj_list, content_ai, ner_result = inference_main('orgcatorg/xlm-v-base-ner', content)
|
|
|
|
if not ner_result[0]:
|
|
|
|
# ذخیره شناسه قانون و شناسه مقرره فعلی
|
|
|
|
separator = '*'*70
|
|
|
|
error = f"\nsection_id= {id}\nlaw_id= {qanon_id}\nerror_msg= {ner_result[1]}\ncontent= {content}\n{separator}"
|
|
|
|
# لیستی از مقرراتی که در اضافه شدن به خطا خورده به همراه
|
2024-12-01 15:03:40 +00:00
|
|
|
# address = os.getcwd() + '/Flair_NER/data/ner_reg_errors.txt'
|
|
|
|
save_to_file_by_address("/data/ner_reg_errors.txt", error)
|
|
|
|
# address2 = os.getcwd() + '/Flair_NER/data/ner_reg_list.txt'
|
|
|
|
save_to_file_by_address("/data/ner_reg_list.txt", id + '\n')
|
2024-09-18 16:35:06 +00:00
|
|
|
continue
|
|
|
|
# ner_obj_list, content_ai = [] , content
|
|
|
|
ner_data_list = prepare_data(ner_obj_list)
|
|
|
|
|
|
|
|
# parse_state = 1
|
|
|
|
except Exception as e:
|
|
|
|
# parse_state = 2
|
|
|
|
save_error(id, e)
|
|
|
|
|
|
|
|
data = {
|
|
|
|
"qanon_id" : qanon_id,
|
|
|
|
"content_ai":content_ai,
|
|
|
|
"ners_v1": ner_data_list
|
|
|
|
}
|
|
|
|
|
|
|
|
eid = id
|
|
|
|
|
|
|
|
try:
|
|
|
|
if is_update_state:
|
|
|
|
resp = es.update(index=index_name_o, id=eid, doc=data)
|
|
|
|
else:
|
|
|
|
#write_to_json(data, './data/regulations_ner.json')
|
|
|
|
resp = es.index(index=index_name_o, id=eid, document=data)
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
save_error(id, e)
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
save_error(id, e)
|
|
|
|
|
|
|
|
print(" # # # regulations NER finished! # # # ")
|