from transformers import pipeline from normalizer import cleaning from elastic_helper import ElasticHelper import transformers import json import datetime import pandas as pd from transformers import AutoTokenizer print(transformers.__version__) #model_checkpoint = "./BERT/findtuned_classification_model_15"# 15 epoch model_checkpoint = '/home/gpu/tnlp/jokar/Classifier/Models/findtuned_classification_model-15' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) window_size = tokenizer.model_max_length#512#200 step_size = 350#100 # with open('./data/errors.txt', 'r', encoding='utf-8') as input_file: # error_sections_id = input_file.read().splitlines() eh_obj = ElasticHelper() path = "/home/gpu/data_11/mj_qa_section.zip" sections = eh_obj.iterateJsonFile(path, True) classifier = pipeline("text-classification", model_checkpoint, framework="pt") def get_class(sentences, top_k:int=4): # sentences = cleaning(sentences) out = classifier(sentences, top_k=top_k, truncation=True, max_length=window_size) return out def mean_classes(input_classes): pass all_classes = [] for cclass in input_classes: for item in cclass: all_classes.append({ 'label': item['label'], 'score': item['score'] }) # sorted_classes = sorted(all_classes, key=lambda x: x['class']) classes_df = pd.DataFrame(all_classes) # گروه بندی بر اساس کلاس grouped_df = classes_df.groupby("label").agg( total_value=("score", "sum"), # مجموع امتیازها count=("score", "count") # تعداد تکرار هر کلاس ).reset_index() # تعریف فاکتور وزن بر اساس تعداد تکرار کلاس grouped_df["weight"] = grouped_df["count"] # بازسازی امتیاز با دخالت دادن وزن grouped_df["score"] = grouped_df["total_value"] * grouped_df["weight"] # حذف ستون‌های اضافی و ایجاد دیتافریم نهایی final_df = grouped_df[["label", "count", "score"]] # مرتب سازی دیتافریم نهایی بر اساس بالاترین امتیاز کلاسها sorted_df = final_df.sort_values(by="score", ascending=False) # تبدیل دیتافریم به دیکشنری top_4_classes = sorted_df.head(4).to_dict(orient="records") for item in top_4_classes: # تبدیل امتیاز در مبنای درصد item['score'] = (item['score']*100)/sorted_df['score'].sum() item.pop('count') return top_4_classes def get_window_classes(text): text_classes = [] tokens = tokenizer(text)['input_ids'][1:-1] #print(len(tokens)) if len(tokens) > window_size: for i in range(0, len(tokens) - window_size + 1, step_size): start_window_slice = tokens[0: i] window_slice = tokens[i: i + window_size] start_char = len(tokenizer.decode(start_window_slice).replace('[UNK]', '')) char_len = len(tokenizer.decode(window_slice).replace('[UNK]', '')) context_slice = text[start_char: start_char + char_len] tokens_len = len(tokenizer(context_slice)['input_ids'][1:-1]) # print(f'i: {i},token-len: {tokens_len}', flush=True) results = get_class(context_slice) text_classes.append(results) text_classes = mean_classes(text_classes) else: text_classes = get_class(text) return text_classes print(f'start: {datetime.datetime.now()}') all = 282671 new_sections_dict = {} for index, item in enumerate(sections): # if index > 100: # break id = item['id'] source = item['source'] content0 = source['content'] try: content = cleaning(content0) except Exception as e: with open('./data/errors_log.txt', 'a', encoding='utf-8') as output_file: output_file.write(id + "\n => " + str(e) + "\n\n") continue try: section_classes = get_window_classes(content) except Exception as e: error = e with open('./data/errors.txt', 'a', encoding='utf-8') as output_file: output_file.write(id + "\n") continue # item['classes'] = section_classes new_sections_dict[id] ={ "best-class":section_classes[0], "other-classes": section_classes[1:] } print(f'section: {all}/{id}/{index+1}', flush=True) with open('./data/all_sections_classes.json', 'w', encoding='utf-8') as output_file: json_data = json.dumps(new_sections_dict, indent=4, ensure_ascii=False) output_file.write(json_data) print(f'end: {datetime.datetime.now()}') print('finished!')